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Chapter 1 

Introduction

Background o f  the Study 

Structural equation modeling is becoming a popular statistical tool in the social 

sciences for a number o f  reasons. One o f  the primary reasons is that the technique is 

general and thus encompasses a wide range o f  useful models. These models include 

confirmatory factor analyses, traditional linear regressions, path analyses, and 

combinations o f  the three. Although the techniques used in structural equation modeling 

are general, the application typically involves five steps: model specification, model 

identification, model estimation, model evaluation and finally model respecification 

(Bollen & Long, 1993).

The first step, model specification, involves the explicit statement o f  the 

relationships between the variables (both observed and latent) in the model. In software 

packages, these relationships are typically stated in one o f three forms: mathematical 

equations, matrices, or path diagrams. It is possible to move between these forms. For 

example, given a structural equation model’s path diagram, it is possible to uniquely 

determine the appropriate matrices for that model.

Model identification is the second step in fitting a structural equation model. In 

this step, mathematical rules are applied so that it is possible to determine if  all o f  the 

parameters that need to be estimated can, in fact, have values computed. The situation 

that is necessary is similar to that in algebra where as many equations as variables are 

needed in order to determine unique solutions. Unlike in algebra, however, there is a 

benefit to having more equations than variables. These over-identified models permit the 

calculation of fit statistics for the evaluation o f  model fit.
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Model estimation involves using variance/covariance matrix data from the 

observed variables to calculate the parameters o f the model that need to be estimated. A 

number o f  different methods are commonly used to fit structural equation models to data. 

Some o f the more popular methods are maximum likelihood, generalized least squares, 

weighted least squares and asymptotic distribution free (Browne, 1984). The choice on 

method o f  estimation is based on a number o f  considerations. Some things that influence 

the choice o f estimator include properties o f the sample data (e.g. normality or lack 

thereof), whether the researcher is looking to maximize the amount o f variance explained 

by the model, and the availability o f  significance tests for model parameters.

Once a structural equation model is specified and the free-parameters estimated, 

the fit o f the proposed model to the sample data is evaluated. Several methods can be 

used to evaluate the model. A Chi-squared test o f discrepancy is available, residuals can 

be analyzed, and many fit indices are calculated in software packages to aid the 

researcher in assessing the proposed model. These procedures are necessary for the 

evaluation o f  structural equation models as the testing o f  these models is not as 

straightforward as is the testing o f  models in other multivariate dependence techniques 

(Hair, Anderson, Tatham, & Black, 1995). In fact, structural equation models should not, 

in most instances, be evaluated using ju st one fit statistic. Shumacker and Lomax (1996) 

made this point succinctly that, “wo one index serves as a definite criterion for testing a 

hypothesized structural equation model.” (p. 135).

Model re-specification may or may not be part o f  a researcher’s use o f structural 

equation modeling. Whether or not a researcher modifies a model after evaluation is 

determined by the researcher’s purpose. Joreskog (1993) drew distinctions between three 

uses o f structural equation modeling: confirmatory, comparative, and model generating.
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Only model generating would permit respecification after the initial, hypothesized model 

has been estimated. Joreskog asserted, however, that this is the most frequent use o f

structural equation modeling (Joreskog, 1993).

Structural equation modeling also has the desirable ability to model relationships 

between latent (unobserved) variables (referred to as factors) and relationships between 

latent variables and observed variables (referred to as indicators). In this way, structural 

equation modeling, in its most general form, can be thought o f  as the union between 

factor analysis and path analysis. Introductory text book authors start with path analysis 

and factor analysis as departure points toward structural equation models because path 

and factor analyses are special cases o f the full structural equation model (see, e.g., 

Maruyama, 1998).

What most sets structural equation modeling apart from other multivariate 

techniques is its ability to take measurement error into account. By contrast, the other 

multivariate techniques that employ the general linear model assume that measurements 

on the observed variables are free from error. Although many o f  the general linear 

modeling techniques have corrections for measurement error, structural equations model 

these measurement errors explicitly. The researcher (based on the reliability o f the 

instrument) may specify the errors or the computer software may estimate the errors. In 

this way, the modeling o f  error makes models more realistic and thus more useful 

(Bollen, 1989).

Aside from application, the two areas o f  structural equation modeling that are 

receiving the most research are model estimation and model evaluation. New estimation 

methods are being introduced that provide appropriate estimates o f parameters under a
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variety o f  conditions contained in real-world data, (e.g., non-normality). New indices that 

attempt to evaluate a model in a  num ber o f  different ways have been developed. This is a 

result o f  the complexities o f  structural equation models. At the present, a fit index has not 

been developed that is able to capture all o f  the elements that would be present in a good 

model in a single fit index.

The Need for Studies on Fit Indices 

o f  Structural Equation Models 

Although there is no shortage o f  fit indices proposed to evaluate the fit o f 

structural equation models, there is little consensus as to what values should be used to 

indicate a good fit of the model to the data. Most o f  the fit indices currently used in 

structural equation modeling have unknown sampling distributions. It is, therefore, not 

possible to enter a table for one o f  the fit indices and retrieve the number associated with, 

for example, the critical value associated with the most extreme 5% o f the statistic's 

distribution. Rules o f thumb have been developed for some fit statistics as to what values 

represent a good fitting model, but most o f  these rules o f  thumb have been called into 

question due to the results o f  simulation work (see, e.g., Hu and Bender, 1999).

The formulas for various fit indices also complicate model assessment. The 

formulae for many fit statistics are not mathematically derived. Different fit indices are 

designed to assess specific aspects o f  model fit. For example, one group o f fit indices is 

designed to look at the relative complexity o f  the model and reward (with better fit 

statistic values) a more simple, o r parsimonious model. To accomplish this, another fit 

statistic is typically adjusted by a  factor based on model complexity. Unfortunately, there 

is no consensus on the correct w ay to account for model complexity. This has led to a 

number o f  different fit statistics that attempt to measure the model fit to the data and the
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relative complexity o f  the model. Structural equation models are complex and it is 

proving to be difficult to find statistics that capture the many aspects o f  good model fit.

Although numerous fit statistics assess different aspects o f  a model it is generally 

held that all fit statistics will generally agree as to the quality o f the model even if  they 

may take on different values. Tabachnick and Fidell (1996) summarized this 

conventional wisdom, "Good-fitting models produce consistent results on many different 

indices in many, if  not most, cases” (p. 752).In fact, it is a commonly held belief that 

although the fit indices do provide different information about the model, they will all 

tend to give the same message about the model. Therefore, it seems appropriate for a 

researcher new to structural equation techniques to focus on one or two fit statistics until 

they are more familiar with the finer points o f  structural equation modeling.

The Problem. Its Purpose and Significance 

The purpose o f  this study is to examine the conventional rule o f  thumb that 

although the structural equation model fit statistics consider different hypotheses and 

behave differently under various conditions, they tend to agree with each other for typical 

structural equation models. This is an important methodological concern because it is a 

rule o f thumb that is given to students when they are first learning to use the techniques 

o f  structural equation modeling. It is important to know if, in fact, this convention is 

useful and accurate in real world work.

Overview o f  the Study 

This study attempts to determine the viability o f the conventional rule o f thumb 

that all structural equation fit indices tend to say the same thing about any given model 

through the employment o f a confirmatory factor analysis. Sets o f  popular fit indices will
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be obtained from researchers using structural equation modeling techniques. Sets o f fit 

indices will be obtained from classroom examples as well as from researchers who 

participate in the discussion group listserver for structural equation modeling (SEMNET).

Additionally, sets o f  indices will be included that were present in textbooks that 

cover structural equation modeling techniques and provide samples o f  output from 

software packages. Examples covered in the manuals for structural equation modeling 

software packages also will be included in the analysis. The fit statistics were chosen for 

inclusion in this study based on their availability in currently popular structural equation 

modeling software packages (i.e. AMOS, EQS, LISREL, SAS). Only those fit indices 

that are provided by each o f  these software packages were included in the confirmatory 

factor analysis. AMOS 4.0 (Arbuckle, 1999) was used to compute the factor analysis on 

the sets o f fit indices obtained.

Research Questions

The primary question that the current study seeks to answer is whether or not the 

wide range o f fit indices available to researchers employing structural equation modeling 

techniques tend to say the same thing about any particular model. Is the level o f  

agreement between the proposed model and the obtained data that is expressed by fit 

indices consistent across the range o f fit indices available? The underlying issue is 

whether or not a given model may have good fit according to some fit statistics and may 

be shown to have poor fit when different fit indices are consulted. If  the results o f this 

study indicate that the notion that all o f the fit indices tend to agree with each other is not 

tenable, another question will be raised: which o f  the structural equation model fit indices 

do tend to agree with each other? Furthermore, it will be interesting to see if  the groups o f 

fit statistics that do load on common factors follow along the lines o f  the current
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classification guidelines proposed for these indices.

Assumptions o f  the Study

1. Each set o f  fit indices consists o f  fit indices measuring the same structural 

equation model. Each statistic is related to the same model in terms o f  specification, 

estimation method, and parameter values.

2. If  the fit indices do tend to agree with each other for any particular 

structural equation model, this fact should show  up in a factor analysis as a single 

dominant factor.

3. If  the factor analysis yields more than one dominant factor, the multiple 

factors will fall along lines that have important implications for the application o f 

structural equation modeling.

Limitations o f the Study 

The largest limitation o f the present study concerns the sets o f  fit indices that will be 

obtained. Although a large number o f  fit indices will be obtained in an attempt to get a 

representative sample of the multitude o f possible structural equation models possible, 

the sample obtained will not be random. It is possible that certain structural model 

configurations will not be represented. Furthermore, the exact models are not known. The 

present study will not be able to detect, for example, if  the fit indices behave differently 

under different estimation methods. The present study is also too general to provide 

recommendations as to values for the various fit indices that would be indicative o f  

“close fit” between the obtained data and the estimated model.
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Chapter 2 

R eview  o f  Literature

The assessment o f  model fit in structural equation models has seen a rapid growth 

over the past twenty years. Traditional statistical tests o f  discrepancy were a natural, first 

attempt to distinguish accurate models from poor ones. It was soon learned, however, that 

the traditional chi-square test o f  discrepancy developed too much power due to the fact 

that structural equation models required such large data sets in order to estimate model 

parameters. Models that showed trivial amounts o f  misfit were rejected due to the fact 

that such large numbers o f  data points were being used in the analysis (Fan, Thompson, 

& Wang, 1999).

This realization that the chi-square statistic was not performing satisfactorily led 

to an explosion o f proposed fit indices. Many o f these newly proposed fit indices had at 

their heart the chi-square test statistic. Different adjustments were proposed and 

incorporated into the formulas for these new indices that were supposed to attenuate the 

undesirable properties o f  the stand-alone chi-square.

Although tests based on model-data discrepancy are important and useful, another 

avenue towards assessing the accuracy o f  a model was pursued. The path analysis/ linear 

regression aspect o f  structural equation modeling suggested the use o f  residuals to try to 

capture the degree to which the proposed model fit the obtained data. A number o f  fit 

indices are based on the relative sizes o f  various residuals after a  structural equation 

model has been fit to data (Hair, Anderson, Tatham, & Black, 1995).

With the numerous fit indices available, as well as the increased application of 

structural equation modeling techniques by researchers, the properties o f  the fit indices 

began to be investigated. It was subsequently determined that many o f the fit indices
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behaved differently from each other under a number o f different conditions. Furthermore, 

the properties o f  a “good” fit index for structural equation models became a topic for 

consideration. This consideration led to classification schemes for the fit indices (Tanaka, 

1993).

As the desirable properties for fit indices were becoming better defined, a large 

number o f studies were undertaken to determine the behaviors o f  specific fit indices. 

Many o f these studies employed computer simulations (e.g.. Ding, Velicer. & Harlow, 

1995). Some o f  these studies consisted o f  models fit to simulated data or Monte Carlo 

studies (e.g., Chou, Satorra, & Bender, 1991). Other studies tried to clarify the behaviors 

o f fit statistics as models were fit to the data that were misspecified to varying degrees 

(e.g., Bandalos, 1997). Other factors that have been hypothesized to influence fit indices 

and have been studied are sample size and estimation method (e.g. Fan, Thompson, & 

Wang, 1999).

The literature on structural equation modeling is expanding quickly with studies 

determining the effects o f  very specific situations on particular fit indices. It is not known 

how well these computer generated data sets reflect the characteristics o f  data sets that 

researchers used in practice. Furthermore, the results o f these simulations have not, to a 

large degree, been compared to what researchers are dealing with in their applications o f 

structural equation modeling. Studies are elucidating the differences between fit statistics 

in specific situations. The fact that so many differences in the properties o f the fit indices 

are being detected naturally raises a question that has, to this point, gone unanswered. 

Specifically, do the fit indices tend to indicate the same thing about the quality o f a 

particular structural equation model even though it is known that the indices themselves 

behave differently for a number o f  reasons?
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The Null Hypothesis o f  a Structural Equation 

and a Statistical Test o f  Discrepancy

The null hypothesis for a structural equation model is:

I = 1(0)

The null hypothesis is that the population covariance matrix equals the implied 

covariance matrix formed by the sample and the model parameters. In the equation. 0  is 

the vector o f model parameters.

The null hypothesis states that two matrices are identical. A natural statistical test 

to employ, then, is a test o f  discrepancy. Mathematically, it can be shown that (N -l)F  is 

distributed as chi-squared. In this expression, N is the sample size and F is the fitting 

function minimized by the estimation method employed. Chi-squared tests are evaluated 

for a given number o f  degrees o f freedom. The degrees o f  freedom for the chi-squared 

test is

df = Vz (p+q)(p+q+l)- t 

where (p + q) is equal to the number o f observed variables and t equals the number of

free parameters estimated for the model (Joreskog & Sorbom, 1996).

An undesirable property o f the chi-squared test statistic in general is the fact that 

its power levels are affected by sample size. The test may lack adequate power to detect 

meaningful departures from the null hypothesis for small samples. Conversely, if  samples 

sizes are too large, the chi-squared test becomes too powerful and detects unimportant 

departures from the null hypothesis (Cochran, 1952). The result is that all models and 

their associated hypotheses will be rejected on statistical grounds (Bentler & Bonnet,
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1980; Joreskog, 1969). Bollen (1989) also pointed out that the chi-squared statistic is

based on fundamental assumptions. These assumptions include a multinormal distribution 

o f  observed exogenous variables, the analysis o f the covariance matrix, adequate pow er 

in the test via sufficient sample size, and a correctly specified model. Bollen stated that, 

in practice, at least one these assumptions is violated (Bollen, 1989. pp. 266-8).

A test that is closely related to the chi-squared is the relative chi-squared 

(Wheaton, Muthen, Alwin, & Summers, 1977). This statistic is formed by dividing the 

obtained chi-squared statistic by its associated degrees o f  freedom. Because this index is 

based on the chi-squared statistic it is influenced by the sample size. However, there are 

no tables o f  critical values for this index, although there are rules o f thumb based on 

experience. One common rule o f  thumb is that yf /df  >2.0 is indicative o f poor fit (Byme,

1989). Although rules o f thumb are useful, particularly in the model generating aspect o f  

structural equation modeling, more intcrpretable measures are desirable for model 

confirming purposes.

Other Statistics Used to Evaluate 

Structural Equation Models 

A useful measure o f model-data fit that does not rely on the chi-squared 

distribution is the root mean square residual (RMR). James Arbuckle (1997) succinctly 

interpreted the RMR as “...the square root o f  the average squared amount by which the 

sample variances and covariances differ from their estimates obtained under the 

assumption that your model is correct.” (p. 571). Although residual analysis is useful for 

assessing the quality o f a model, particularly via model comparison, there are no absolute 

standards relating the size o f the RM R to a well fitting model. As with all residuals, 

however, values o f  RMR closer to zero indicate better model-data agreement. An
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additional consideration with the RMR is that it is based on an arithmetic mean and 

therefore is not robust to the presence o f outliers in the data, which in this case are the 

residuals. Although it is probably easiesr to understand the RMR conceptually from the 

standpoint o f a residual, the formula to calculate the RMR is given as:

RMR = {2 I  X (sy -  eij)2/[p x (p+1)]}1/2 

where Sjj are elements o f  the sample variance/covariance matrix and ey are elements of 

the model-implied, or estimated, variance/covariance matrix (Marsh, Balia, & McDonald, 

1988).

Joreskog and Sorbom (1984) provided the goodness o f  fit index (GFI) in an

attempt to have a statistic with upper and lower bounds. The GFI can be thought o f  as a 

proportion o f variance accounted for by the proposed structural equation model. 

Practically, it ranges between 0 and 1 with a value o f 1 indicating perfect fit. The GFI is 

defined as

GFI = tr(CT'W<r)/ tr(s’Ws) 

where the numerator is based on the estimated model covariance matrix and the 

denominator is based on the sample covariance matrix (Tabachnick & Fidell, 1996). 

Mathematically, it is possible to obtain negative values for the GFI. Fortunately, this 

happens only when there is a  serious discrepancy between the model and the sample data. 

The adjusted goodness o f fit statistic (AGFI) was proposed by Joreskog and

Sorbom (1984). The AGFI is based on the GFI with an adjustment for model complexity.

This adjustment is based on the degrees o f  freedom in the proposed model relative to the 

total degrees o f freedom possible for any model that could be fit for the particular data 

set. Like the GFI, a value equal to 1 for the AGFI indicates perfect model fit. The AGFI
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is given by the formula

AGFI = 1 - {(p+q)(p+q+l)/2d}(l-GFI).

In this formula p+q is equal to the number o f observed variables included in the analysis, 

d is equal to the degrees of freedom for the model and GFI is the value o f  the goodness-

of-fit index (Joreskog & Sorbom, 1996).

The parsimony goodness o f  fit index (PGFI) was proposed by Mulaik, et. al. 

(1989) as an alternative to the AGFI. Like the AGFI, the PGFI adjusts the goodness of fit 

index by a factor involving the degrees o f  freedom in the proposed model and the degrees 

o f freedom in the null model. The PGFI is calculated using the formula 

PGFI = (d/db)GFI

where the ratio d/db is calculated by dividing the degrees o f  freedom o f  the model being 

evaluated by the degrees o f freedom for the null model (Arbuckle, 1999). The adjustment 

contained in the PGFI is different from the AGFI, but interpretation is similar. All other 

things being equal, a simpler model will have a value closer to 1.0.

The Tucker-Lewis index (Tucker & Lewis, 1973) is another incremental fit 

statistic that takes into account model complexity. The Tucker-Lewis Index (TLI) was 

also presented by Bentler and Bonnet (1980) as the non-normed fit index (NNFI). (The 

TLI was originally developed for factor analysis, a specific application o f structural 

equation modeling. Bentler and Bonnet generalized the fit statistic to structural equation 

modeling, in general, in the form o f  the NNFI.) As with the other incremental fit and 

comparative fit indices, values closer to 1.0 indicate better model data agreement. The 

calculation o f  the Tucker-Lewis Index is

TLI = ( X n 2 / d f „  -  X t2 / d f t) / ( X n 2 / d f „  -  1.0).

In the formula for the Tucker-Lewis Index, the subscript n represents a value from the
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null, or independence model. A subscript o f  t represents a value from the target, or tested 

model (Marsh, Balia, & McDonald, 1988).

The incremental fit index (also known as A2) was introduced by Bollen (1989) to 

create a fit index that was independent o f sample size and took model complexity into 

account. Like many o f  the other fit indices, values close to 1.0 indicate very good fit and 

values greater than 1.0 may indicate overfitting the model to the data (i.e. not having 

enough degrees o f  freedom in the model). The formula for the IFI is

IFI = x2b-x2m/x2b-dfm,

where the subscripts denote which model the value comes from. A subscript b indicates a 

value from the null or baseline model, and a subscript m indicates a value from the model 

being tested.

The root-mean-square error of approximation or RMSEA (Brown & Cudek,

1993) is a fit index that has generated widespread interest among researchers using 

structural equation models. The RMSEA is defined as the square-root o f  the discrepancy 

function minimized by the estimation method divided by the degrees o f  freedom in the 

model (Arbuckle, 1999, Steiger & Lind , 1980, and S teiger, 1990). Like the TLI, Steiger 

(1980) developed this index for factor analysis. Browne and Cudeck (1993) adapted and 

presented the RMSEA for use with the general approach o f structural equation modeling. 

The RMSEA is unlike many o f the previously mentioned fit indices in that values close 

to 1.0 do not indicate good model fit. As its name implies, the RMSEA is an average 

error, or residual. As in other multivariate techniques, good models have relatively small 

residuals. Therefore, values o f  the RMSEA close to 0.0 are desired. Browne and Cudeck 

(1993) presented a rule o f  thumb for the values o f  the RMSEA that indicate reasonable 

fit. They asserted that values less than 0.08 are evidence o f  reasonable model fit.
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Classification o f Structural Equation Fit Indices 

As the number o f fit indices easily accessible to researchers increased, it soon 

became apparent that the different fit indices had some important differences. These 

differences provide the basis for useful classification systems that can aid researchers in 

choosing appropriate fit indices for their studies.

The first widely used classification scheme for fit indices consisted o f two 

classifications; so called “stand-alone” indexes, and “incremental” indexes (of which 

there were two types) (Marsh, et al. 1988). The chi-square/df ratio and the RMR are 

examples o f  stand alone fit indices. Stand alone indices attempt to assess the fit o f  the 

hypothesized model in absolute terms. Incremental indexes, on the other hand, attempt to 

assess model fit by comparing the hypothesized model to some other “baseline” model. 

Typically, this baseline model is the “null” model, a  model in which all o f the observed 

variables are assumed to be uncorrelated. Incremental fit indices measure the 

improvement in model fit for the hypothesized model compared to this null model. 

Bentler and Bonett (1980) pointed out that the incremental fit indices can be used for any 

two nested models, not just the hypothesized and null models.

Hu and Bentler (1995) further refined and delineated the two types o f incremental 

fit indices into two groups; relative indexes and absolute indices. Relative indices are a 

slightly broader class o f  indices than the incremental indexes. With relative indices the 

hypothesized model may be compared to the null model and to the “just identified” or 

“saturated” model. The just identified is a model in which there are no degrees o f  

freedom. This model represents a hypothetical best fitting model. The null model and the 

saturated model provide the endpoints o f a continuum along which the hypothesized 

model’s fit can be placed (Maruyama, 1998). Judgements as to the quality o f a model’s
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fit are then determined by the proximity o f  the model’s fit statistic to either o f these 

endpoints. Models whose fit index is relatively closer to the fit statistic value o f the null 

model are determined to be poor fitting while models whose fit statistic is close to the 

value o f  the saturated model’s show good fit. Hu and Bentler (1995) also proposed 

adjusted indices that would take into account the relative complexity o f  the hypothesized 

model compared to the null and saturated models. These fit indices are useful for gauging 

the parsimony o f the hypothesized model. All other things being equal, researchers 

typically prefer simpler models.

Tanaka (1993) provided a comprehensive and complete classification scheme for 

structural equation fit indices. Tanaka expanded on the work o f Marsh, et al. (1988), and 

Hu, Bentler & Kano (1992) and proposed six dimensions along which fit indexes could 

be classified. This scheme accommodated the ground work that was laid by Marsh, et 

al.(1988), and Hu and Bentler. For example, the absolute and relative fit indexes can be 

placed along a dimension that ranged from fit indexes that were absolute (i.e. stand alone) 

to those that are relative (i.e. incremental). Hu and Bentler’s adjusted fit indexes could be 

placed along a simplicity vs. complexity (p. 16) continuum. This represents the degree to 

which a fit index penalized models in which many parameters were estimated.

The new dimensions for fit indexes that were provided by Tanaka were 

‘‘population vs. sample” based, “normed vs. non-normed”, “estimation method free vs. 

estimation method specific”, and “sample size independent vs. sample size dependent” 

(Tanaka, 1993, p. 16). Population vs. sample is determined by whether or not the fit index 

estimates a known population parameter. Normed fit indices are designed to have values 

that range from 0 to 1. Estimation method free indexes will have values that do not 

change across estimation methods (i.e. maximum likelihood or generalized least-squares).
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Sample size independent fit indexes will have values that do not fluctuate due to differing 

sample sizes for estimation o f  the same model (Tanaka, 1993).

Differences Between the Fit Indexes

The classification schemes for the fit indices employed by researchers using 

structural equation models allow  the choice o f  fit indices that target specific aspects o f  

their models. For example, a model producing the smallest possible residual may be more 

desirable than the most parsimonious model. These schemes also delineated the ways in 

which the fit indices differ and have led to a number o f  research studies investigating 

how they differ from one another under a variety o f  circumstances.

Although researchers were having success classifying the fit indexes according to 

their similarities, research was beginning to show that the fit indexes behaved differently 

from each other for a number o f  reasons. Kaplan (1988) looked at the effect o f  

specification error and estimation method on structural equation models and found that 

different estimation methods would yield biased parameter estimates for different sets o f 

parameters within the same model. This research showed that ML estimation yielded 

biased parameter estimates across the model when misspecification was present while 

another estimation method, two-stage least squares, only produced biased parameter 

estimates around the model’s misspecification. Interestingly, in neither case was bias 

detected in the parameters associated with the observed indicators o f  latent endogenous 

variables. The prospect o f  bias in parameter estimates is insidious. Kaplan (1988) pointed 

out that parameter bias in the structural model propagated into the measurement model. 

Although it might be expected this would tend to produce lower values o f  the goodness- 

of-fit functions, it was found that the relative chi-square was not able to detect models 

with severe levels o f parameter bias in certain models. Furthermore, it is probably not
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possible to determine, ahead o f time, what models lead to this situation (Kaplan, 1988).

Structural equation techniques are primarily designed for use on data that is 

continuous and, for some estimation methods, multivariate normally distributed. 

Techniques have been developed, however, that allow the techniques to be used on 

categorical data. These techniques are necessary because research has shown that when 

data sets containing ordinal data are analyzed using product moment correlation 

coefficients, the estimates o f  structural parameters are biased (Ethington, 1987).

Green, et al. (1987) showed that the number o f scale points employed in Likert 

scale data had an effect on the chi-square statistic employed in the evaluation of 

confirmatory factor analyses. They found that as the number o f  scale points increased, the 

likelihood that the chi-square statistic would indicate spurious additional factors in data 

generated from a dataset reflecting a single factor decreased. This finding was contrary to 

previous research which they cited (e.g. Bernstein & Teng, 1989).

Coenders, Satorra, and Saris (1997) showed the use o f  different types o f 

correlation coefficients would also affect the accuracy o f the point estimates o f the 

model’s parameters when ordinal data was used. They compared the Pearson product- 

moment coefficient, the polyserial coefficient and the conditional polychoric correlation. 

As the underlying continuous distribution(s) reflected by the ordinal scale(s) became less 

normal, the polyserial and conditional polychoric coefficients tend to produce less biased 

point estimates for model parameters.

It has also been shown that as ordinal data exhibits increasing non-normality, the 

fit indices are affected, although to different degrees. Further complicating matters is the 

interaction between estimation method and non-normality. Research has shown that the 

effects o f non-normal data on fit indices are tempered in some instances by the estimation
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method used to fit the structural equation model to the data. For example, the use o f 

weighted least-squares to fit a model will offset somewhat the effects o f  non-normality in 

the data for some fit indices such as the chi-square statistic and RMSEA, but not in fit 

indices such as the NNFI or the CFI (Hutchinson & Olmos, 1998).

Nonnormal data pose problems in structural equation models even if  the data are 

continuous. Curran, West, & Finch (1996) showed that ML estimation showed increasing 

bias in its chi-square based fit indexes as nonnormality in the data increased. This same 

bias was not present when ADF was used with appropriate sample sizes. Their study 

indicated that non-normal data tended to impede the chi-square statistic's ability to detect 

model misspecification.

Nonnormal data have also been shown to affect the estimation o f  structural 

parameters (variances and regression weights) in structural equation models. 

Nonnormality affects the estimation o f the disturbances for latent endogenous variables 

to a greater extent than it affects the estimation o f other model parameters. Furthermore, 

non-normality tends to produce standard errors for the model parameters that 

underestimate the variability o f  the parameter estimates. This makes testing for 

significant model parameters difficult, even for the parameter estimates that have been 

shown to not be overly influenced by nonnormality (e.g., factor loadings) (Wang, Fan, & 

Willson, 1996).

In more complicated structural equation models, researchers may not be interested 

in individual model parameters. Rather, it may be that the effect o f  one latent variable on 

another latent variable that is o f  substantive interest. The total effect o f one latent variable 

on another is equal to the sum o f the direct effect (regression coefficient) between the two 

variables and any indirect effects. An indirect effect is a  path from the first latent variable
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to the second that passes through at least one other latent variable. An indirect effect is 

also referred to as a mediated effect. Nonnormality makes the estimation and significance 

testing o f the total effect o f one latent variable on another difficult to because o f 

differential influence on the standard errors. The estimates o f standard errors for 

mediated effects show less bias under nonnormality than do the estimates o f the standard 

errors for direct effects (Finch, West, & MacKinnon, 1997).

Research has also shown that the estimation method used to fit the structural 

equation model to the empirical data set can have an effect on the fit indexes for that 

model (Ding, Velcier, & Harlow, 1995). It was shown that many but not all o f  the fit 

indices studied were significantly affected by estimation method. The results o f this study 

indicated that less bias was present in the estimation o f  parameters when GLS was 

employed compared to when ML was used with the model. This finding was supported 

by Fan, Thompson, & Wang (1999). Their research also showed that estimation method 

significantly affected the fit indices o f  structural equation models. This study also 

expanded upon the results o f  Ding, Velcier, & Harlow (1995) by showing that 

misspecified models demonstrated more bias in their fit indexes than did correctly 

specified models. This is important since research using structural equation models often 

employs the comparison o f competing models. Bollen and Long (1993) state the point 

well; “it is better to consider several alternative models than to examine only a single 

model. Often knowledge in an area is not detailed enough to provide a single 

specification o f  a model” (p. 7). I f  two or more models are being compared, at least one 

will be misspecified.

Marsh (1998) showed that the method in which a researcher deals with missing 

data can also result in bias in fit indexes based on the chi-square test statistic. Listwise
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deletion o f missing data is often undesirable due to the large sample sizes required to 

estimate structural equation models. Pairwise deletion allows for the use o f  all available 

information in the calculation o f the covariances used in model estimation. 

Unfortunately, a major problem with pairwise deletion is that as the number o f  deletions 

increases, the likelihood that the variance covariance matrix will become non positive- 

definite increases. I f  the variance-covariance matrix is non positive-definite, it cannot be 

inverted and a solution cannot be estimated. Even if  pairwise deletion does not result in a 

not positive-definite matrix, the values o f  the chi-square test statistic (and all fit indices 

that use the chi-square value) will be biased. This bias does not appear in the parameter 

estimates themselves.

As the affects o f  such things as measurement level, estimation method, and 

missing data are becoming clearer in broad ways, research is shifting to look at how 

specific fit indexes behave and compare to each other under very controlled conditions. 

Computer simulation (e.g. Monte Carlo, bootstrap) continues to be the method o f choice 

for this research.

Marsh (1995) has compared the TLI to Bollen’s A2 fit index and found the TLI to 

perform better. The A2 fit index was shown to be systematically biased as sample size 

changed. Marsh also contends that the parsimony correction built into A2 actually 

accomplishes the opposite, that it penalizes the simpler model. To further complicate 

matters, this penalty also varies with sample size. The penalty is larger for small N than 

for larger N (Marsh, 1995) In Bollen’s original derivation o f  A2, the parsimony 

correction is explained and appeared to be correct (Bollen, 1989, 271-2). Marsh 

interpreted the same correction in a different way and arrives at the opposite conclusion. 

It has not been determined which interpretation is correct.
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Other fit indexes are also being questioned on philosophical grounds. Rigdon 

(1996) compared the CFI with the RMSEA citing research showing that incremental fit 

indexes like the CFI are less stable across estimation methods than absolute fit indexes. 

Rigdon questions whether the null model is the most appropriate model to compare the 

hypothesized and saturated models to. He conceded that abandoning this convention 

would result in a number o f  very similar fit indexes that are not directly comparable and 

do not have sampling distributions on which to base an assessment o f overall model fit. 

In the end, Rigdon (1996) agreed with (and cited) Sobel & Bohmstedt's (1985) 

recommendation that the CFI should be used in exploratory (model generating) 

endeavors and that the RM SEA should be used in a confirmatory role (Sobel & 

Bohmstedt, 1985).

The difficulties encountered in the above research dealing with adjustments for 

parsimony do not come as a surprise. Marsh, Balia, & McDonald (1988) suggested that 

an ideal fit index is one that is independent o f sample size, adjusts for parsimony, and 

adjusts for overall model fit. McDonald and Marsh (1990) expanded this list to include 

that a fit index that reflects the true population model when it is known. Compared to this 

standard, all o f the currently available adjusted for parsimony fit indexes fail to meet all 

o f  these criteria. The fit indexes fail to meet these criteria in different aspects and to 

different degrees (Williams & Holahan, 1994).

Based on the previously cited research showing that estimation method, scale o f 

measurement, sample size, normality o f the data, and portion o f  the model under analysis 

can affect fit indices it is reasonable to question, as Tanaka (1993) does, whether in fact 

all o f  the different fit indexes calculated for any given structural equation model will tend 

to agree in their reflection o f  the quality o f model-data fit. Tanaka stated the point well:
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“Given the ambiguity that can arise from multiple fit measures, it is essential to develop 

some unifying set o f  principles for comparing fit indices” (p. 15).
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Chapter 3 

M ethodology

A request was made to the SEMNET Internet discussion group 

(SEMNET@BAMA.UA.EDU) via the SEMNET listserver. Researchers were asked to e- 

mail the portion o f  computer output that contains the fit indices for structural equation 

models that they had estimated. Sets of fit indices that were produced by AMOS, EQS, 

LISREL, or PROC CALIS (SAS) were included in this confirmatory factor analysis. 

These packages were chosen since they are the most widely used software packages used 

for structural equation modeling. For consistency, only fit indices that are calculated by 

all four software packages were included in the analysis.

The common core o f fit indices that were included in this study consisted o f  9 

statistics; chi-square, the relative chi-square, the root mean square residual (RMR), the 

goodness o f fit index (GFI), the adjusted goodness o f  fit index (AGFI), the parsimony 

goodness o f fit index (PGFI), the Tucker-Lewis index (TLI, also referred to as the non- 

normed fit index (NNFI)), the incremental fit index (IFI, also referred to as Bollen's A2), 

and the root mean square error o f approximation (RMSEA). These fit indices were used 

as the data set for a confirmatory factor analysis consisting o f  one latent factor (goodness- 

of-fit) with nine observed indicators (the 9 fit indexes). The confirmatory factor analysis 

model was estimated by AMOS 4.0 (Arbuckle, 1999) on an IBM personal computer 

running the Windows 95 operating system.

The target sample size for this study was 300 sets o f  fit indices. The sample was 

then randomly divided into two groups, each consisting or approximately 150 complete 

sets o f  fit indices. The first group was used to estimate the initial model and the second 

was used to cross-validate the model once appropriate modifications had been made. This
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sample size is based on the need to estimate eighteen model parameters in a one-factor 

model. Kline (1998) opined that that a ratio o f between 10:1 and 20:1 is appropriate to 

have between number o f  subjects and number o f estimated free parameters (Kline, 1998, 

p. 211). The target sample size o f  150 in each group meets this ratio. This sample size is 

also appropriately sized so as to not over-power the chi-square test statistic (Hayduk, 

1987).

The initial model estimated in the confirmatory factor analysis was a one factor 

model in which all nine fit indices are specified to load upon the single latent factor. It is 

appropriate to specify and estimate a  single factor confirmatory factor analysis as a 

starting point when previous research does not give guidance as to the number o f  factors 

that are in the model (Kline, 1998).

The quality o f the one factor model was not judged by only the chi-squared 

discrepancy test. The squared-multiple correlations for each observed variable were 

computed along with the chi-square discrepancy test. The squared-multiple correlation 

for each observed variable is the proportion o f the variance in that variable that is 

explained by the factor. A discrepancy in the values o f  the squared-multiple correlations 

may indicate that the number o f latent factors specified is incorrect (Kline, 1998).

The modification indices were also computed to see other potential model 

modifications. Modification indices give a conservative estimate o f the decrease in the 

chi-squared test i f  certain model parameters (correlations) were freed to estimation rather 

than being constrained to equal zero (Arbuckle & Woethke, 1999). Modification indices 

are calculated based solely on statistical criteria and not on theoretical considerations. For 

this reason, it is possible that some, or all, o f the covariances that are indicated as 

capable o f  improving model fit will not be freed to estimation. As an example, theory
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would support allowing the errors in the chi-squared test and the relative chi-squared test 

to correlate. Both o f  these fit statistics are based directly on the chi-squared statistic. As 

an aside, this particular correlation was left out o f  the initial model in the interests o f  

parsimony. On the other hand, theory probably would not support error in the chi-squared 

statistic directly correlating with the error in the root mean-squared residual since they 

are based on different functions.

Once the model had been modified based on theoretical and appropriate statistical 

concerns, the specification for this revised model was applied to the second half o f  the 

collected data. As with the initial model, the fit o f  the revised model was assessed by the 

chi-square fit statistic and by the squared-multiple correlations. Various fit indices are 

also reported to help facilitate independent future research.
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Chapter 4  

R esults

Participants in the SEMNET discussion group returned 331 complete sets o f fit 

indices for expressed use in this study. Four cases were multivariate outliers as 

determined by significant Mahalanobis distances. These four cases were excluded from 

the sample. This sample was then split randomly using SPSS 9.0 into 2 groups, group 1 

for use in initial model building and group 2 for cross-validation.

The first group consisted o f 159 sets o f  fit indices. All nine fit indices displayed 

some degree o f  non-normality. However, the chi-squared and root-mean-residual were 

more atypical than the other 7 fit indices as shown in Table 1.

Fit Index Skewness Kurtosis

Chi2 2.521 6.201

RelChi2 1.528 1.441

RMSEA .794 1.218

RMR 3.735 13.173

GFI -1.135 .502

AGFI -.644 -.149

PGFI -.313 -.645

TLI -.590 .023

IFI -1.170 1.508

Table 1: Skewness and Kurtosis Statistics for Group l.

Based on the relatively greater values o f skewness and kurtosis compared to the other 

seven fit indices, these two variables were excluded from the analysis. This decision
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appears reasonable in light o f  Kline’s characterization o f  skew values greater than 3 as 

"extreme” (Kline, 1998, p.82).

The first step in the model generation process consisted o f  fitting a one-factor 

model to the seven fit indices in the data set. The path diagram for this model is presented 

in Figure 1:

G F I 1

! relchi2 agfirmsea

egfi epgfi) ( etli) (eifiermse

Figure 1: The One Factor Model.

The one factor model does not fit the data in group 1 well. The obtained chi- 

squared value o f 801 (14 df) is significant at the traditional .05 level. The other fit 

indices also indicate poor fit (GFI = .577, RMSEA = .412, incremental fit indices < 0.65). 

The squared multiple correlations for observed variables are presented in Table 2.
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Observed Variable Squared Multiple Correlation

IFI 0.593

TLI 0.733

PGFI 0.071

AGFI 0.892

RMSEA 0.395

RelChi2 0.154

GFI 0.855

Table 2: Squared Multiple Correlations Resulting from the One Factor Model.

The squared multiple correlations show that there may be promise in the factorial 

representation o f  the model. Four observed indicators have over half o f  their variance 

accounted for by the single factor. A further indicator as to the potential for the model is 

the fact that the factor loading o f each observed variable, with the exception o f GFI, is 

statistically significant at the 0.05 level. The factor loading o f GFI on the latent factor 

cannot be tested for significance because it was fixed at 1.0 to satisfy the identifiability of 

the model. The fit o f  the one factor model, however, is not good. The next step involved 

modifying the model, using the same data, in order to try to get a better fitting model to 

use in cross validation.

Statistical guidance in modifying structural equation models can typically be 

found in two places. If  there are non-significant paths in the original model, those paths 

may be eliminated from the model. Additionally, software packages calculate 

modification indices that give an indication o f  how much the model fit will improve if 

specified paths are added to the model. Each o f  these methods was used in modifying the
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one factor model and the results are summarized below. Obviously, one must be careful 

in deleting or adding paths from the a priori model. The conceptual ramifications cannot 

be overshadowed by the statistical criteria o f a path significance, or the value o f  a 

modification index.

The one-factor model did not have any non-significant paths. No paths will be 

deleted in the first round of model modification. Model modification will consist o f 

adding a second factor to the model. This addition is justified on two levels. First, the 

variance o f  three o f the observed indicators is not well accounted for by the single factor. 

Second, the modification indices indicate that model fit can improve significantly if 

certain measurement errors are allowed to correlate with each other. Correlated error 

terms are often indicators of a missing factor in the equations o f the observed variables 

whose measurement errors are indicated to covary (Schumacker & Lomax 1996, p.86). 

This missing factor may either be a factor in the model that has no direct effect on the 

two observed variables or it may be an unmodeled factor. Since there is only a single 

factor in the first model, an unmodeled second factor is clearly indicated.

The indication for the addition o f a second factor complicates the model when 

considered in conjunction with the fact that there are no non-significant factor loadings in 

the one factor model. This means that the second factor will “overlay” the first factor. 

Stated another way, some observed variables will be directly affected by both factors. 

This will result in a model that doesn’t possess the characteristic o f unidimensional 

measurement. This fact will manifest itself in the need to impose some additional 

constraints on the model in order to achieve identifiability. The path diagram for the two 

factor model is presented in Figure 2:
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Figure 2: The Two Factor Model.

Two additional model modifications were made to the one-factor model. The 

variance o f  the second factor was set to 1.0. This was required in addition to fixing the 

factor loading o f the observed variable GFI to achieve identifiability o f the model. 

Modification indices indicated that the errors between the observed variables GFI and
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AGFI should covary even after the addition o f the second factor. The covariance between 

the measurement errors o f  GFI and AGFI is defensible since the value o f  GFI is used 

directly in the computation o f  AGFI.

As anticipated, the fit o f  the two factor model was significantly better than that o f 

the one factor model. The chi-square statistic was significantly reduced to 44.4 with 8 

degrees o f  freedom. The other fit indices also demonstrated improved fit (GFI = .933, 

RMSEA = .17, Incremental fit indices > .86). The values o f  these fit indices do not quite 

demonstrate good fit. They are much better than those o f  the original model, and are quite 

close to the “traditionally accepted” empirical cut-off values.

As with the one-factor model, all o f the factor loadings o f the observed variables 

were statistically significant. Squared-multiple correlations for observed variables are 

presented in Table 3.

Observed Variable Squared Multiple Correlaton

IFI 0.474

TLI 0.922

PGFI 0.520

AGFI 0.486

RMSEA 0.867

RelChi2 0.524

GFI 0.554

Table 3: Squared Multiple Correlations from the Two Factor Model.

As can be seen in Table 3, four o f  the squared multiple correlations increased as a result 

o f  including the additional factor. Although three squared multiple correlations did 

decrease in value, no manifest variable has a less than 47% o f  its variance accounted for
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by the model as opposed to 7% in the one factor model.

No further model modification is appropriate. All paths are statistically significant 

and should be retained. Modification indices do not indicate that there are more paths to 

add, at least none that would be worth the loss o f  an additional degree o f freedom. The 

two factor model with two correlated errors (as shown in Figure 2) will be the model used 

for cross-validation with group 2 o f the data set.

Group 2 consisted o f  168 complete sets of fit indices. As with group 1, the 

variables were not normally distributed. The degrees o f non-normality in the manifest 

variables were comparable to those seen in group 1 with the exception o f the relative chi- 

squared variable. Relative Chi-squared exhibited much more skew in group 2 (skewness 

>4) than it did in group 1. This variable was not excluded from the analysis since this 

sample is being used to confirm the model generated with group 1. Fit indices for both 

groups are presented in Table 4.

Group Relative Chi-Squared GFI TLI/IFI RMSEA

Group 1 5.55 .93 .89/.96 .17

Group 2 8.08 .92 89/.96 .21

Table 4: Fit Indices for Groups 1 and 2 for the Two Factor Model.

Table 5 presents the squared multiple correlations for observed variables in both groups. 

As in group 1, all paths were statistically significant (<.05) when the second group data 

were fit to the two factor model.
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Observed Variable Squared Multiple Correlations 

Group 1 / Group 2

IFI 0.474 / 0.922

TLI 0.922 / 0.994

PGFI 0.520 / 0.455

AGFI 0.486 / 0.742

RMSEA 0.867 / 0.589

RelChi2 0.524/0 .216

GFI 0.554 / 0.972

T able 5: Squared Multiple Correlations from Groups 1 and 2 for the Two Factor Model.
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Chapter 5 

D iscu ssio n

Assessing model-data fit in structural equation models is at once both a rapidly 

developing, as well as a tricky area o f  research. Perhaps the vigor with which this area is 

being explored is most evident by the terms researchers use to describe it. Tabachnick & 

Fidell describe this are o f research as “ lively” (1996, p. 748), while Bollen stated that this 

area is surrounded by “the most heated controversies” (Bollen & Long, 1993, p.2). This 

study does not provide the information necessary to resolve these controversies. It does, 

however, share some insight regarding a  fundamental concept that, to this point, had been 

taken for granted. This clarification does move the area forward in two ways. First, 

pedagogical practices are addressed and clarified and secondly, a focused direction for 

future research is specified.

The results o f  this study show that the conventional wisdom that all the fit indices 

tend to say the same thing is an oversimplification. It is well known that the fit indices 

will be highly correlated with each other (Marsh, et al., 1988). This study showed that 

this inter correlation did not manifest itself in a one factor model. More specifically, the 

fit indices did not load on a single factor that could be thought o f  as the construct “good 

fit”. Rather than good fit being thought o f  as a single unified construct with the fit indices 

being the observed indicators, multiple latent factors, each representing an aspect o f  good 

fit, affected the fit indices. This coincided nicely with Tanaka’s multi-dimensional 

classification scheme for the fit indices (Tanaka, 1993).

The null hypothesis in structural equation modeling is represented by

2 = 2(0)

where 2  is the population covariance matrix and 2(0) is the covariance matrix formed by
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the sample moments and the vector o f free model parameters, 0. In an attempt to test this 

model, the sample covariance matrix was compared to an implied covariance matrix 

based on the model parameters and the discrepancy was noted. Each o f  the fit indices in 

this study attempted to capture this discrepancy. Factor 1, which affected each fit index, 

could be thought o f  as the factor representing the discrepancy between Z and 1(0). This 

factor of absolute model discrepancy is common throughout statistical hypothesis testing. 

At their hearts, even the most basic statistical tests are trying to determine whether there 

is ‘too big’ a discrepancy between the data at hand and the specified model. Structural 

equations do tend to have more complicated models than, say, t-tests do. When we 

specify, a priori, that a particular statistic is equal to some value (or another statistic) we 

have a model that can be tested. This process o f  testing makes use o f  the discrepancy 

factor, no matter how simplistic the model.

The second factor was less clear in its meaning. Factor 2 did not directly impact 

either the relative chi-square, or the RMSEA fit statistic. These two fit indices were the 

most straightforward measures o f  discrepancy used in this study. Neither o f  these two fit 

indices compared the results o f  the estimated model to anything related to another model. 

The five fit indices that factor 2 did affect do compare results from the estimated model 

to some other model. Factor 2 could be thought o f as comparative discrepancy.

At first consideration, it may not be clear that the GFI is a fit index that compares 

the results from two models. In fact the GFI is typically considered to be analogous to the 

multiple R-square used so predominately in multiple regression (Tanaka & Huba, 1989). 

Thought o f in this light, GFI appears to be an absolute index o f fit and contrary to the 

notion that factor 2 in this study represents comparative discrepancy with respect to some 

additional model.
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Joreskog & Sorbom (1984) described their GFI in slightly different terms. They 

explained the GFI as a proportion. The numerator o f  this proportion is the value of the 

minimum fit function for the model under consideration. The denominator is the value o f 

the fit function before any model has been fit to the data (1996. p 29). Looking at the GFI 

in this manner, we see that we are comparing models. The GFI compares the results o f 

the specified model to the results o f  no model, a null model in the absolute truest sense.

The AGFI and the PGFI both employ a model comparison strategy via the GFI. 

This model comparison is implicit in the fact that both the AGFI and the PGFI have at 

their hearts the GFI. Therefore, the AGFI and the PGFI were also indicators o f the 

comparative discrepancy factor.

The formulas for the TLI and the IFI are clearer in their use o f model comparison. 

Due to this, it was easier to see how they are manifest variables o f the comparative 

discrepancy factor. In each o f  these fit indices, chi-squared discrepancy statistics are 

calculated based on a null model. The null model represents a very poorly fitting model 

and provides a basis for evaluating the fit o f the hypothesized model. The TLI and the IFI 

make use o f  the two discrepancy statistics and the attendant degrees o f freedom for the 

two models in the calculation o f  their values.

A natural question was raised at this point. For the five fit indices that were 

affected by both the factor o f absolute discrepancy and the factor o f comparative 

discrepancy, do the factors affect the fit indices differentially? Although this was not one 

of the research questions that this study was initially designed to answer this question was 

able to be addressed in a reasonable manner.

In an attempt to gain insight into the nature o f any differential effects the 2 factors 

have on the fit indices (if there were any), the two factor model was re-estimated using
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data from both the initial and confirmatory data sets. Both data sets were combined so 

that the factor loadings would be based on as much data as was available and thus be as 

robust as possible. The factor loadings for the five fit indices that were affected by both 

latent factors are presented in Table 6.

Fit Index
Factor 1 Loading 

(Absolute Discrepancy)

Factor 2 Loading 

(Comparative Discrepancy)

GFI 1.00* 1.00*

AGFI .732 .772

PGFI -2.001 -1.937

IFI .731 .765

TLI .506 .578

*The factor loadings o f  GFI were fixed to 1.0 for identifiability.

T able  6: Factor Loadings for Fit Indices Affected by Both Latent Factors 

The factor loadings for the GFI index were fixed at 1.0 to identify the model. The most 

intriguing result were the factor loadings o f  PGFI. The factor loadings o f  PGFI were o f  

twice the magnitude o f  the loadings o f  the other, non-fixed fit indices. The sign o f the 

factor loadings o f PGFI were also o f the opposite sign compared to the others.

It is well known that in structural equation modeling overall model-data fit can be 

improved by simply freeing more model parameters for estimation. Obviously, the more 

model parameters that are estimated from the data set, the better the model will fit the 

data set. Fit indices such as the AGFI and PGFI incorporate a correction to the standalone 

GFI fit statistic based on the number o f  model parameters estimated. More specifically, a 

downward adjustment is made to the GFI based on the number o f  model parameters that 

are freed for estimation. The magnitude o f  this downward adjustment increases as the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



39

number o f  free parameters increases. The results o f  this study showed that the correction 

incorporated in the PGFI is much more extreme than the correction incorporated in the 

AGFI. This is important in light of the findings o f Marsh, Balia, & McDonald that the 

AGFI already overcorrects for adding additional free parameters to a particular target 

model (1988, p. 398). Another possibility is that the data set consists o f  many sets o f  fit 

indices that are based on models that were close to being saturated.

This result related to the PGFI does not come as a complete surprise. Tabachnik 

and Fidell (1996) pointed out that, unless there are many more covariances than there are 

free parameters, the PGFI will have a value much lower than the other fit indices (1996, 

p.751). Williams and Holahan (1994) found that the PGFI was one o f  the two best fit 

indices for differentiating between nested models that progress from a target model 

toward a saturated model. This result clearly showed that the PGFI is very strongly 

influenced by the addition o f  free parameters to the model.

The other interesting result from looking at the loadings on the absolute 

discrepancy and comparative discrepancy factors was that the TLI had smaller loadings 

than the IFI or the AGFI. This may mean that the TLI is more stable in the face o f  

discrepancy between the model and the data. Additionally, the TLI had the highest 

squared multiple correlations in both the exploratory and confirmatory data sets. These 

two results, taken together, would seem to indicate that the Tucker-Lewis Index is the 

best fit index for use in assessing a structural equation model in terms o f  both absolute 

and relative discrepancy.

Limitations o f  the Study 

As with any study, there are certain qualifiers that need to be explicitly stated. The 

major limitation o f this study relates to the data set. While the sample size was
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appropriate for the testing o f the structural equation models, it is made up o f  fit indices 

that represent a very small portion o f all the possible structural equation models that are 

possible. Another limitation o f this study is the number o f  fit indices used in the data set. 

More specifically, having to reduce the number o f  observed variables from nine to seven 

is disappointing. The exclusion o f the two variables for violation o f  distributional 

assumptions does increase confidence in the results that this study produced. Finally, the 

results o f this study should be carefully scrutinized due to the fact the final structural 

equation model exhibits somewhat questionable model-data fit.

Suggestions for Further Research

While all o f  the model’s parameters were statistically significant, and much o f the 

observed variables’ variance was explained, the fit indices for the model fell slightly 

outside traditionally accepted values. This fact raised an interesting question that should 

be investigated: What does it mean to have a  model account for a lot o f  variance, yet not 

fit the data well?

The results o f  this study need to be cross-validated with many more sets o f fit 

indices. The model should also be tested against data sets that are much larger than the 

one used in this study. Using larger data sets would allow three things. First, it could be 

investigated whether there are more factors that affect the fit indices. Secondly, tests for a 

higher order factor structure could be conducted. It is possible that there is a higher order 

factor that affects factors representing good fit including the two factors brought out in 

this study. Finally, using larger data sets would allow for the model to be fit using 

asymptotic-distribution free estimation. This would allow the use o f all nine fit indices 

originally intended for use in this study, since the distributional assumptions are relaxed 

from what they are in maximum likelihood estimation. This would also allow for

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



41

additional fit indices to be included in the model, as mentioned above, without having to 

worry about their distributional properties.

The relationship between the GFI based fit indices should be explored further. 

The results o f  this study showed two interesting results related to the PGFI that are not 

totally clear. First the sign and magnitude o f the PGFI factor loadings are not consistent 

with those o f the other fit indices that are affected by both absolute discrepancy and 

comparative discrepancy. Perhaps more interestingly, the modification indices did not 

indicate a covariance between the measurement error o f  the PGFI as was present between 

the GFI and the AGFI. If this correlated error is indicative o f  an unmodeled factor, it 

appears to be a factor that does not impact the PGFI to the same extent that it impacts the 

GFI and the AGFI. This relationship between the three indices needs to be clarified.

Additional fit indices should be included in future research to determine which 

factors they load on and what the magnitudes o f those loadings are. The seven fit indices 

ultimately used in this study are ju st a small portion o f  the over thirty lit indices that have 

been developed for use in evaluating model fit in structural equation modeling. It is 

important to determine how additional fit indices relate to the factors o f absolute 

discrepancy and comparative discrepancy.
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APPENDIX A

The covariance matrix obtained from the fit indices in group 1 is:

rmsea relchi2 PGFI ifi tli agfi gfi
rmsea 0.004

relchi2 0.246 27.918

PGFI -0.002 -0.222 0.024

ifi -0.002 -0.098 -0.004 0.009

tli -0.004 -0.235 -0.002 0.005 0.008

agfi -0.004 -0.120 -0.003 0.005 0.008 0.016

gfi -0.001 -0.007 -0.006 0.004 0.005 0.010 0.008

The covariance matrix obtained from the fit indices in group 2 is:

rmsea relchi2 PGFI ifi tli agfi gfi
rmsea 0.003

relchi2 0.222 42.373

PGFI 0 .000 -0.222 0.030

ifi -0.003 -0.091 -0.005 0.005

tli -0.004 -0.201 -0.003 0.006 0.008

agfi -0.003 -0.108 -0.006 0.005 0.006 0.007

gfi -0.001 0.010 -0.007 0.004 0.004 0.005 0.004
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The covariance matrix from the complete data set is:

rmsea relchi2 PGFI ifi tli agfi

rmsea 0.005

relchi2 0.338 46.785

PGFI -0.002 -0.276 0.027

ifi -0.004 -0.269 -0.004 0.010

tii -0.006 -0.385 -0.002 0.008 0.011

agfi -0.005 -0.266 -0.004 0.007 0.010 0.014

gfi -0.003 -0.132 -0.006 0.006 0.007 0.010

gfi

0.008
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APPENDIX B

The output path diagram from the one factor model is:
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The values o f the path coefficients for the one factor model and their test statistics are:

Regression Weights
Estimate S.E. C.R. P

gfi <—GFI 1 1.000
relchi2 <—GFI 1 -31.469 4.218 -7.460 0.000
rmsea <—GFI 1 -0.510 0.038 -13.558 0.000
agfi <—GFI I 1.330 0.043 30.942 0.000
Pgfi <—GFI1 -0.516 0.106 -4.872 0.000
tli <—GFI 1 1.095 0.046 23.886 0.000
ifi <—GFI 1 0.940 0.049 18.994 0.000

The values o f the modification indices from the one factor model are:

Covariances: M.I. Par Change

etli <--> eifi 106.034 0.002
eagfi <--> eifi 74.525 -0.002
ermsea <—> etli 115.551 -0.002
ermsea <--> epgfi 55.014 -0.004
erelchi2 <--> etli 67.386 -0.172
erelchi2 <--> epgfi 50.287 -0.391
erelchi2 <--> ermsea 148.984 0.231
egfi <--> epgfi 100.838 -0.004
egfi <—> eagfi 64.387 0.001
egfi <—> ermsea 129.807 0.001
egfi <—> erelchi2 74.413 0.124

Regression Weights: M.I. Par Change

tli <— rmsea 67.983 -0.396
tli <~ relchi2 56.562 -0.004
rmsea <— Pgfi 50.930 -0.130
rmsea <— relchi2 124.912 0.005
relchi2 <-- rmsea 87.225 46.739
gfi <-- Pgfi 93.486 -0.134
gfi <-- rmsea 77.017 0.290
gfi <-- relchi2 62.604 0.003
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The fit indices resulting from the one factor model are:

Fit Measure Default model Saturated Independence
Discrepancy 801.414 0.000 2166.144
Degrees o f freedom 14 0 21
P 0.000 0.000
Number o f parameters 14 28 7
Discrepancy / d f 57.244 103.150

RMR 0.091 0.000 0.136
GFI 0.577 1.000 0.350
Adjusted GFI 0.154 0.134
Parsimony-adjusted GFI 0.288 0.263

Normed fit index 0.630 1.000 0.000
Relative fit index 0.445 0.000
Incremental fit index 0.634 1.000 0.000
Tucker-Lewis index 0.449 0.000
Comparative fit index 0.633 1.000 0.000

Parsimony ratio 0.667 0.000 1.000
Parsimony-adjusted NFI 0.420 0.000 0.000
Parsimony-adjusted CFI 0.422 0.000 0.000

Noncentrality parameter estimate 787.414 0.000 2145.144
NCP lower bound 698.350 0.000 1996.021
NCP upper bound 883.873 0.000 2301.602

FMIN 2.414 0.000 6.525
FO 2.372 0.000 6.461

FO lower bound 2.103 0.000 6.012
FO upper bound 2.662 0.000 6.933

RMSEA 0.412 0.555
RMSEA lower bound 0.388 0.535
RMSEA upper bound 0.436 0.575

P for test o f close fit 0.000 0.000

Akaike information criterion (AIC) 829.414 56.000 2180.144
Browne-Cudeck criterion 830.105 57.383 2180.489
Bayes information criterion 909.971 217.113 2220.422
Consistent AIC 896.728 190.628 2213.801
Expected cross validation index 2.498 0.169 6.567

ECVI lower bound 2.230 0.169 6.118
EC VI upper bound 2.789 0.169 7.038

MECVI 2.500 0.173 6.568
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The output path diagram from the two factor model is:
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The path coefficients resulting from the two factor model estimated with group 1 data are:

Regression Weights
Estimate S.E. C.R. P

gfi <— GFI2 1.000
agfi <— GFI2 0.981 0.066 14.939 0.000
tli <— GFI2 0.860 0.094 9.149 0.000
ifi < - - GFI2 0.909 0.122 7.429 0.000
gfi <— GFI1 1.000
agfi <— GFI1 0.937 0.068 13.862 0.000
tli <— GFI1 0.808 0.096 8.414 0.000
PGFI <— GFI1 -1.660 0.212 -7.846 0.000
ifi <— GFI1 0.896 0.126 7.134 0.000
rmsea <— GFI1 0.062 0.004 14.633 0.000
PGFI <— GFI2 -1.582 0.206 -7.687 0.000
relchi2 <— GFI1 3.909 0.384 10.187 0.000

The covariances o f  the two factor model fit two data from group 1 are:

Covariances
Estimate S.E. C.R. P

GFI1 < ->  GFI2 -0.976 0.008 -130.110 0.000
egfi < ->  eagfi 0.005 0.001 7.225 0.000
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The fit indices for the two factor model fit to the data from group 1 are:

Fit Measure Default model Saturated Independence
Discrepancy 44.353 0.000 866.128
Degrees o f  freedom 8 0 21
P 0.000 0.000
Number o f  parameters 20 28 7
Discrepancy /  d f 5.544 41.244

RMR 0.028 0.000 0.082
GFI 0.933 1.000 0.438
Adjusted GFI 0.766 0.250
Parsimony-adjusted GFI 0.267 0.328

Normed fit index 0.949 1.000 0.000
Relative fit index 0.866 0.000
Incremental fit index 0.958 1.000 0.000
Tucker-Lewis index 0.887 0.000
Comparative fit index 0.957 1.000 0.000

Parsimony ratio 0.381 0.000 1.000
Parsimony-adjusted NFI 0.361 0.000 0.000
Parsimony-adjusted CFI 0.365 0.000 0.000

Noncentrality parameter estimate 36.353 0.000 845.128
NCP lower bound 19.087 0.000 752.558
NCP upper bound 61.128 0.000 945.094

FMIN 0.281 0.000 5.482
FO 0.230 0.000 5.349

FO lower bound 0.121 0.000 4.763
FO upper bound 0.387 0.000 5.982

RMSEA 0.170 0.505
RMSEA lower bound 0.123 0.476
RMSEA upper bound 0.220 0.534

P for test o f  close fit 0.000 0.000

Akaike information criterion (AIC) 84.353 56.000 880.128
Browne-Cudeck criterion 86.487 58.987 880.875
Bayes information criterion 184.650 196.415 915.232
Consistent AIC 165.731 169.929 908.610
Expected cross validation index 0.534 0.354 5.570

ECVI lower bound 0.425 0.354 4.985
ECVI upper bound 0.691 0.354 6.203

MECVI 0.547 0.373 5.575
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The output path diagram resulting from fitting the two factor model to the data in group 2
is:
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The path coefficients resulting from fitting the two factor model to the data in group 2
are:

Regression Weights
Estimate S.E. C.R. P

gfi < — GFI2 1.000
agfi < - - GFI2 0.772 0.056 13.870 0.000
tli <— GFI2 0.578 0.070 8.229 0.000
ifi <— GFI2 0.765 0.057 13.474 0.000
gfi <— GFI1 1.000
agfi < — GFI1 0.732 0.058 12.725 0.000
tli <— GFI1 0.506 0.073 6.979 0.000
PGFI < — GFI1 -2.001 0.203 -9.840 0.000
ifi <— GFI1 0.731 0.059 12.423 0.000
rmsea <— GFI1 0.046 0.004 11.674 0.000
PGFI <— GFI2 -1.937 0.197 -9.850 0.000
relchi2 <— GFI1 3.106 0.481 6.456 0.000

The covariances resulting from fitting the two factor model to the data in group 2 are:

Covariances
Estimate S.E. C.R. P

GFI1 < ->  GFI2 -0.972 0.006 -165.743 0.000
egfi <—> eagfi 0.001 0.000 5.007 0.000
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The fit indices resulting from fitting the two factor model to the data in group 2 are:

Fit Measure Default model Saturated Independence
Discrepancy 64.660 0.000 1335.299
Degrees o f  freedom 8 0 21
P 0.000 0.000
Number o f  parameters 20 28 7
Discrepancy / d f 8.082 63.586

RMR 0.045 0.000 0.075
GFI 0.916 1.000 0.341
Adjusted GFI 0.706 0.121
Parsimony-adjusted GFI 0.262 0.255

Normed fit index 0.952 1.000 0.000
Relative fit index 0.873 0.000
Incremental fit index 0.957 1.000 0.000
Tucker-Lewis index 0.887 0.000
Comparative fit index 0.957 1.000 0.000

Parsimony ratio 0.381 0.000 1.000
Parsimony-adjusted NFI 0.363 0.000 0.000
Parsimony-adjusted CFI 0.365 0.000 0.000

Noncentrality parameter estimate 56.660 0.000 1314.299
NCP lower bound 34.674 0.000 1198.207
NCP upper bound 86.122 0.000 1437.766

FMIN 0.387 0.000 7.996
FO 0.339 0.000 7.870

FO lower bound 0.208 0.000 7.175
FO upper bound 0.516 0.000 8.609

RMSEA 0.206 0.612
RMSEA lower bound 0.161 0.585
RMSEA upper bound 0.254 0.640

P for test o f  close fit 0.000 0.000

Akaike information criterion (AIC) 104.660 56.000 1349.299
Browne-Cudeck criterion 106.672 58.818 1350.004
Bayes information criterion 206.057 197.956 1384.788
Consistent AIC 187.139 171.471 1378.167
Expected cross validation index 0.627 0.335 8.080

ECVI lower bound 0.495 0.335 7.384
ECVI upper bound 0.803 0.335 8.819

MECVI 0.639 0.352 8.084
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The assessment o f  model data fit in structural equation modeling is a complicated 

and rapidly expanding area o f  research in the social sciences. Numerous fit indices have 

been proposed by researchers which attempt to capture the degree to which a structural 

equation model agrees with the observed data. Numerous studies have shown that 

different fit indices are affected to different extents by such things as degree o f non

normality o f the data, estimation method employed, and mis-specification within the 

model. Despite these differing properties, new students to structural equation modeling

are often told that the fit indices will all tend to agree with each other in their assessment

of the model data fit. This study investigated whether or not this agreement manifests
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itself in a single factor model in which multiple fit indices load on a latent factor that 

could be thought of as the construct good fit. The results o f  this study showed that the one 

factor model was an over-simplification. Rather than loading on a single factor, the fit 

indices included in this study were affected by two factors. The two factors can be 

thought o f as absolute discrepancy and comparative discrepancy. Additionally, results o f 

this study showed that the observed fit indices were affected differentially by the two 

latent factors. Suggestions for further research were made, including one based on a 

somewhat surprising result found with respect to the goodness o f  fit index and other fit 

indices derived from it.
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