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PREFACE

This is what might be called a teaching dissertation. This was pointed out to me

by my advisor, Dr. Shlomo Sawilowsky. While most dissertations focus on the topic, a

teaching dissertation also reviews foundational ideas which, for maturing disciplines such

as educational statistics and measurement, are generally taken for granted. In addition,

the author of a teaching dissertation places present research in context of those

foundations. Such dissertations are rare outside of Education, and even within Education

many dissertations are not teaching dissertations.

In this dissertation I go back to the foundations. Not only is a history of

simulation presented, but the work discusses theories of probability, philosophy of

science, and epistemology. It is indeed rare that a work which employs computer

intensive methods goes back to discuss Plato or refers to Tina Turner. The primary

student of this teaching dissertation is the author. It enabled me not only to explore a

focused research question of deep interest, but also to gain a much better understanding of

foundations that make the research possible.

I once heard it said that one medieval conception of the university was as a

machine to perfect the students. Although this work has certainly not perfected me, it

certainly has changed the way I view the world and how to do research. Thus, it is a

record of this change. I hope you find it useful.
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CHAPTER 1

INTRODUCTION

Background

This study is motivated by the actions of the governments in the United

States at the federal and state levels that have attached increasingly high stakes

to standardized educational tests. Just as the profound consequences that

resulted from innovation of physicists at the beginning of the last century

prompted a deep philosophical consideration of the meaning and methods of

science, so to the profound consequences for the lives of thousands of

individuals from the innovations by government officials should prompt a deep

philosophical investigation of the meaning and methods of standardized testing.

This work is part of this investigation and ultimately a call for psychometric

modesty—that is, a call for government officials, the educational administrators

they employ, and the general public not to expect or demand more of the tests

than is psychometrically justified.

To this end this dissertation explores to what extent two influential, yet

controversial, post war (post World War II) intellectual positions can be mutually

illuminating and whether this illumination can be used to improve educational

policy. The specific positions are as follows:
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• There should be high stakes educational tests, and

• Bayesian approaches can be used to improve measurement, more

precisely, that a simple Bayesian approach can improve

educational evaluation.

To explore these propositions, an ancillary hypothesis that Classical

Measurement Theory is in some sense true, or at least usable, is assumed. The

exploration makes extensive use of Monte Carlo Simulation, Response Surface

Methodology, and, to a lesser degree, Logistic Regression. The statistical tools

are employed in a ‘classical’ rather than Bayesian mode. The specifically

Bayesian mechanism is a simple form of Bayes’s Theorem used more by

individuals working in the Philosophy of Science than in Bayesian Statistics. It is

hoped that this relatively gentle approach to Bayesianism will, if the results are

published, encourage educators and educational administrators to consider

Bayesian approaches, if not for policy implementation, at least to gain a deeper

understanding of the limits of high stakes testing and the potential of Bayesian

methodology. In a sense this is to stress an emphasis found at the roots of

modern Bayesianism for an early and major work of Bayesian statistics

published in the Psychological Review was aimed at researchers concerned with

practical matters connected to this domain: “The 1963 paper by Edwards,

Lindman, and Savage introduces Bayesian inference to practically minded

audiences” (Kotz and Johnson, 1993).
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Evaluation2 has become a dominant theme in the public debate about

education. Standardized tests, particularly high stakes tests, are becoming an

increasingly important means of evaluating performance and implementing

accountability. This was becoming apparent at the end of the last century.

Phelps (1998) indicated that the American public wants standardized tests.

Standardized tests can have high stakes for students, teachers, administrators,

schools, and districts, and politicians. In 1998 Joftus and Whitney indicated that

“Fifteen states currently prevent students who do not meet academic standards

form graduating or being promoted” (p. 28). Manzo (1998) indicated the

implications of high stakes tests for schools, “Illinois issues warnings to those

[schools] that don’t have at least half of all students scoring at grade level on

state tests. Texas grants its highest rating only to those schools with at least 90

percent of students passing each subject area on state tests” (p. 26). Shadham

(1998) indicated that states tests can have direct financial impact, and that in

September 1998 the Pennsylvania legislature distributed “$10 million to 994

schools that scored exceptionally well on statewide tests” (p. 13). There is a long

standing debate about the impact of the tests on education. However, Shadham

(1998) also noted the debates rage as to whether high stakes tests used for

2 The emphasis on educational evaluation can be viewed as part of a larger
American intellectual trend, which might be termed ‘Measurableism,’ that is, the
reduction of the evaluation of most fields important human endeavor, whether
business, government, or education—and decisions upon which these
evaluations are based—to simple, and at times simplistic, measurement. But
these measurements often hide value judgments. The fact that the Bayesian
epistemological framework brings the judgmental element into explicit
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accountability are rigorous enough and whether improvements in test scores

correlate with other examinations, such as other state exams or National

Assessment of Educational Progress (p. 13). Blair (1998) cited others who

wonder if the improvement in test scores represents an improved education:

Some research shows that such incentive programs can boost test
scores. In North Carolina, for example, 84 percent of students in grades K-8
met state standards in 1998, compared with 57 percent in 1997, following
implementation of the state’s incentive plan, officials said.. . .But some critics
believe the high test scores [can produced results that] can be deceiving.
Teachers and Principal may end up so preoccupied with tests that ‘they may
not provide the kind of time it takes to give students a comprehensive
education,’ said John I. Wilson, the executive director of the North Carolina
Association of Educators. (p. 5)

More recently, the Center for Educational Policy (2006) has indicated that

22 states with 65% of US students and 71% of minority students have test

requirements for graduation or advancement. This is expected to rise to 25

states with 75% of all students and 81% of minority students in 2012 (pp. 1-2). In

addition, in 2006 ten additional states which did not require tests for graduation

or advancement attach high stakes to certain tests (see Figures 1 and 2).

consideration is one of the author’s motivations for using this framework. The
intellectual predecessor of “measurableism” is Bridgman's Operationalism.
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An example of a state with high stakes tests that are not graduation

requirements is Michigan, in which state law not only required students to obtain

a certain score on its Michigan Educational Assessment Program (MEAP) High

School Test to graduate with an endorsed diploma, but also had the following

intension:

The new endorsement will be easier for colleges,
universities and employers to use because the transcripts are part
of the admission process and [are] often asked for by employers.
Schools are now required to indicate whether or not the student
earns the endorsement, the level of the endorsement and the test
score on the transcript. (Michigan Department of Education, 1998)
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Now, at the beginning of the 21st century, there are a number of books

exploring the costs and benefits of such high stakes testing (Dwyer (2005),

Thomas (2005), Firestone, Schorr, and Monfils (2004), Phelps (2004). In

addition, among the most controversial aspects of the No Child Left Behind Act

is the emphasis on testing. Finally, it is worth noting that a major concern is

differential impact of high stakes tests on minority students, including increasing

minority drop out rates. This is ironic given that a major motivation for the

introduction of a major high stakes test, the SAT, was the desire to be more

democratic in admissions (Lemann, 1999).

Purpose

As participants in a living discipline, the professional educational

evaluators—as well as teachers and administrators--must constantly evaluate

new methodologies, approaches, tools and frameworks, including those relating

to the evaluation of high stakes tests. The focus of this study is to explore

potential impact of one data driven intellectual technology, Bayesianism, to the

evaluation of high stakes educational tests.

A Bayesian epistemological framework is closely tied to Bayesian

statistical methodologies. These contrast with those of the dominant Frequentist

school of statistics that has profoundly influenced educational evaluation for

decades. One of the motivations for the use of statistically rigorous

methodologies in educational evaluation is to put evaluation on a scientific basis.

Some Bayesians, such as Howson and Urbach (1993) claimed preeminence in
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scientific rigor, stating, “[The] Bayesian approach is the only one capable of

representing faithfully the basic principles of scientific reasoning (p. 2).” The

current study will explore a less pretentious possibility: Under what

circumstances might a Bayesian epistemological framework improve educational

evaluation? Specifically, are there circumstances where a Bayesian approach

results in more accurate classification of examinees as meeting educational

standards, a major purpose for which high stakes tests are used. Indeed, the

correct classification can be seen as the very definition of validity. To this end, a

Response Surface model based on data from Monte Carlo simulations is used to

determine the conditions under which a Bayesian approach might result in more

accurate classification than complete reliance on the Observed Score of a high

stakes test alone. The creation of these conditions can be used as a

specification for a system that would use a Bayesian epistemological framework

to evaluate the results of the high stakes educational tests.

In exploring this educational evaluation question, this study will address

one of the key areas for which the Bayesians claim much more capability than

the those using Frequentist approaches, “[H]ow can one be certain, in any

particular case, that one has selected the correct cause of an event out of the

huge, indeed infinite, number of possible causes” (Howson and Urbach, 1993, p.

3). In this study, the cause of interest is whether or not the examinee truly

meets a state mandated criterion. In the terms of Classical Measurement

Theory, this is equivalent to having a True Score above the cut score.
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Definition of Terms

Bayesian: Of or relating to Bayesian statistics or the Bayesian

epistemological framework. One who practices Bayesian statistics or adheres to

the framework.

Bayesian Statistics: A school of statistical though which (a) makes use of

methods involving applications of Bayes’s Theorem (in various forms), and (b)

defines probability as a degree of belief. Note: Some would say that Bayesians

recognized the use of Bayes’s Theorem as the only way to update probability.

Bayesian Epistemological Framework: The view that Bayesian statistical

methodologies provide a warranted method of inference, that is, for revising

one’s degree of belief in the truth of an hypothesis. See Bayes’s Theorem.

Bayes’s Theorem: A mathematical theorem derivable from the definition

of conditional probability. The Theorem is named after the Rev. Thomas Bayes

(1702-1761), whose posthumous work of 1763 is credited with the theorem’s

introduction, although the modern form is attributable to Laplace. Note: as a

mathematical theorem, it is uncontroversial for Frequentists as well as

Bayesians. It is the interpretation of the variables which is controversial.

Belief: An individual position on the truth or falsehood (or degree of truth)

of a proposition.

Classical Measurement Theory (also Classical Test Theory): A theory of

(educational) measurement that focuses on the test as a whole. Its cornerstone

is that an Observed Score on a test is composed of two components, a True

Score plus Error (symbolically O = T + E). Its results are sample dependent.
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Cut Score: In educational testing, the score at or above which a test taker

“passes” the test. The Cut Score is a Social Construct.

Decision Theory/Decision Theoretic: The areas of statistics and

operations research dealing with rational decisions under uncertainty rather than

truth or hypothesis testing.

Data Probabilities: See Probabilities, Bayesian.

(Statistical) Design of Experiments (DoE): A procedure to select

combinations of factors to provide a great deal of information from a relatively

small number of experiments.

Educational Evaluation: The process of determining if a student has met

specific educational objectives.

Epistemology and Epistemological Framework: The branch of philosophy

which deals with knowledge and justification. An epistemological framework is an

approach to being confident that which is believed to be is knowledge is true, or

at least useful.

Event: Something which happens, including (as a physicist might say) the

event that an object exists.

Frequentist Statistics: The school of statistics which views probability of

event as the limit of that event’s relative frequency as the number of probability

experiments of interest (which might produce that event) approaches infinity.

Item Response Theory (IRT): A theory of (educational) measurement that

focuses on the item, rather than the test as a whole. It employs statistical models

(with stringent assumptions) to develop Item Response Functions which provide
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estimates of the difficulty of the items and the ability of students on the same

scale (also called Modern Test Theory by its practitioners). 

Knowledge: Undefeated, justified (warranted) true belief. Note: Many

Bayesians dispense with the concept of knowledge and let belief do the work of

knowledge.

Monte Carlo Simulation: A computer intensive statistical technique to

simulate stochastic processes. It is particularly useful when the probability

distributions of factors involved in the process are not susceptible to closed form

solutions.

Observed Score: The score an examinee receives on a particular

administration of a test. The reported score of a test.

Operationalism: An approach to Philosophy of Science initially suggested

by Nobel Lauret P. W. Bridgman (Kasser, 2006) which seeks clarity by defining

measurements in terms of strict operations. This idea was influential in physics

at the turn of the 20th century. Presently used for some psychological factors, for

example, a person is diagnosed as depressed if they have a certain score on a

test of depression. In the Industrial Quality field, Deming insisted on operational

definitions, and indicated it had three elements: A measurement system (which

is in a state of statistical control), a criterion, and a decision.

Philosophy of Science: A branch of philosophy (closely related to

Epistemology and sometimes closely connected with the History, Sociology, and

Psychology of Science) that explores the degree to which science has a unique

epistemic status for discovering knowledge.
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Pragmatism: The American School of philosophy exemplified by practical

applications of ideas and instrumentalism—that the meaning of an idea is in its

effect.

Probabilities, Bayesian: In Bayesian Statistics, one combines a prior

probability with a data probability through Bayes’s Theorem to obtain a posterior

probability:

• Prior Probability: The degree of belief that certain proposition is true prior

to knowing certain evidence. This is sometimes referred to as simply “the

prior.”

• Data Probabilities: The probabilities that certain evidence would (not)

occur given the proposition of interest is true (false). This is a likelihood of

obtaining an experimental result given the truth (or falsehood) of the

hypothesis under study.

• Posterior Probability: The degree of belief that a certain proposition is

true after certain evidence is known. This is sometimes referred to as

simply “the posterior.”

Note: For Bayesians all probabilities are viewed as degrees of belief.

Reliability: The psychometric property of a test (instrument) which

assesses the degree to which it consistently measures the same characteristic.

Science: A way of gaining knowledge which involves both discovery and

justification.

Social Construct: An unobservable object, created by a group of humans,

frequently embodying the group’s value judgments. Meeting an educational
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standard is an example of a social construct.

True Score: The score an examinee would receive on a test if there were

no random error. In Frequentist terms, the long run average score of an

examinee if he/she could take the test over and over without any impact due to

memory, fatigue, learning, additional study or other factors. True Scores are

unobserved objects.

Unobserved Object: In the Philosophy of Science, an object which cannot

be observed directly (examples include quark, atom, happiness, depression, and

True Score) which serves an important explanatory function in a theory. An

investigator may hold that the observed object has a real, independent existence

or merely use it as a useful place holder—or inference ticket—in the explanation.

Validity: The psychometric property of a test (instrument) that assesses

the degree to which it measures what it purports to measure.

Objectives of the Study

The study has the following objectives:

1. To describe the Bayesian Epistemological Framework and its relationship to

the Philosophy of Science.

2. To evaluate the potential effectiveness of the Bayesian Epistemological

Framework in a specific application, the evaluation of a High Stakes

Educational Test Result.

3. To help determine if the further development of the Research Questions of

the study might constitute a fruitful programme of research.

4. To demonstrate to educational researchers the value (in terms of efficiency



14

and ease of analysis) of combining Monte Carlo Simulation with Design of

Experiments. (Note: This combination is used in industry to assist in solving

complex engineering problems).

5. To promote research programmes in education that have three elements: (a)

a strong philosophical foundation, (b) a means, or procedure of application to

achieve the philosophical ends, and (c) pragmatic suggestions for promoting

the procedure.

6. To promote Frequentist/Bayesian interchange by using predominately

Frequentist techniques to demonstrate the value of a Bayesian approach.

7. To promote interchange between Bayesian Statisticians and Philosophers of

Science working with Bayesian concepts by using a form of Bayes’s Theorem

favored by philosophers to explore an application of Bayesian statistics.

8. To be part of the response to the urgent need for philosophical reflection on

the meaning of high stakes test scores brought about by the actions of

government officials who have invested educational tests with consequences

that profound implications for both individuals and society.

9. To lay the groundwork for one or more refereed publications which will lead to

increased understanding of Bayesian approaches as well as the meaning of

high stakes test results.

10.To popularize a term, “Psychometric Modesty.”

11.To lay the groundwork for one or more popular publications for which will lead

to increased understanding of Bayesian approaches as well as the meaning

of high stakes test results.
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12.Make clear the fact that educational administrators must choose between

Operationalism and admitting the existence (or at least the use) of an

unobserved object, a True Score and if they choose Operationalism, realize

what the costs may be.

The Research Questions

The research questions are as follows:

Philosophical: What is the Bayesian Epistemological Framework?

General: Might evaluating high stakes educational tests from a Bayesian

epistemological framework result in more accurate classification of examinees

than reliance on observed scores alone?

Specific: What characteristics of the prior probability of meeting Michigan

State Standards on the Mathematics portion of the Michigan Educational

Assessment Program (MEAP) High School Test might result in a higher

proportion of the students being classified as endorsable at Level I (Endorsed,

Exceeds Michigan Standards) or Level II (Endorsed Met Michigan Standards)

when their True Score would indicate they should be so endorsed and fewer

students being classified as endorsable if their True Score is indicates they

should not be so endorsed?



16

Human Subjects

No human subjects were used in the empirical portion of the study. It is a

Monte Carlo simulation based on the distribution of actual test scores on for

Grade 11 first time test takers on the Mathematics portion of the Michigan MEAP

High School Test (data in Appendix A). These data are in the public domain.

The names of students or their schools or cities were be part of the dataset.

Justification

The justification for this study can be viewed from two perspectives:

From the perspective of the producer of the study, the justification is to

provide an opportunity for the author learn to about the basic tools Bayesian

statistics and, more importantly, the underlying Philosophy of Science of this

school of thought. It also provides the opportunity to determine if the area of

applying Bayesianism to educational evaluation is likely to be a fruitful research

agenda. Finally, it provided an opportunity to survey the history of statistics

leading to the Bayesian approach.

From the perspective of possible consumers of the papers that might

result from this programme of research, including educational evaluators and

individuals interested in applying new ideas in an applied field, the following

justification is offered. The application of any new approach, whether it be in

educational evaluation or another field of endeavor, should have three elements:
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1. A solid philosophical foundation. This is needed because any methodology

without such a (possibly implicit) foundation risks ad-hocism and thus limited

value. A function of professional researchers is to make such philosophical

foundation explicit.

2. A procedure for application. No matter how solid the philosophical

justification for applying an idea, without a specific procedure to apply the

idea there can be no application. Such procedures should have

specifications, that is, criteria for evaluating their inputs and outputs. This

paper focus on the specifications for an input.

3. A pragmatic facilitation of that application. For example, the procedure must

not only exist, it must be relatively simple for the practitioner to apply.

Another justification for this paper is to explore the combination of Monte

Carlo and Design of Experiment techniques in educational research. Over the

past decade, this has become somewhat common in engineering applications.

In addition, some justification must be provided for the fact that this study

does not develop a specific procedure for producing prior probabilities that an

examinee meets the standard which the high stakes tests seeks to measure.

The development of a methodology, or criteria, on which to judge such

production methods is logically prior to developing those methods. Without

criteria, there is no possibility of evaluating the methodology. Thus this study

seeks to specify the characteristics of the distribution of prior probabilities which

such methods—to be developed at a later stage of this research programme—

must if they are to be considered for adoption.
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This final point is a justification for the simple application of Bayesianism

used in this paper, that is, employing a form of Bayes’s Theorem mathematically

equivalent to that contained in elementary texts that discuss the theorem. As

most application of Bayesian statistical tools by educational evaluators within the

next decade would be at an elementary level, it is reasonable to have the

application fairly basic. This is not only because Bayesianism is new to

education, but it is new to most ‘non-Bayesians.’ This can be seen in the debate

contained in the August 1997 issue of the AmericanStatistician (51)2, regarding

the wisdom of teaching of Bayesian statistics at an introductory level.

Assumptions and Limitations

1. The study assumes that educational evaluators are interested in the True

Score of an examinee rather than the Observed Score. More precisely, that

anyone interested in educational testing would be more interested in the

knowing if a student actually meets an educational standard than they

achieved an Observed Score above a Cut Score which is defined as the level

of meeting the standard. In other words, they would be more interested in the

True Score if they understood the difference between it and the Observed

Score. There are alternatives, for example, that the educational evaluators

will take a strict Operationalist position. Thus, they would make achieving an

Observed Score a necessary and sufficient condition to be classified as

proficient. However, to do so is to reject both Classical Measurement Theory

and Item Response Theory.
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2. The study assumes that professional educational evaluators strive to be less

arbitrary, and that to be less arbitrary is to be more scientific.

3. In large part the study assumes—or more precisely uses—Classical

Measurement Theory, i.e., O = T + E, that is, that a examinee’s Observed

Score is composed of their True Score plus an Error term which is

independently and identically distributed normal for all examinees taking a

test a specific administration and that E ~ N (0, σ meas), where σ meas is the

standard error of measurement.

4. As only one administration of the Mathematics portion of the Michigan MEAP

High School Test (Appendix A) is used as a basis for the Monte Carlo

simulations, the results are sample specific and are not immediately

generalizable to any other high stakes test or any standardized test.

5. The study does not work out a specific procedure for implementing an

application of the Bayesian epistemological framework in educational

evaluation. Rather, it explores the specifications (in terms of attributes of the

prior probabilities) that such systems must meet.

6. The study involves no human educational evaluators. The specific

mechanism for producing “Priors” is beyond the scope of the paper.

7. The philosophical portion of the study does not provide a complete

justification for a Bayesian epistemological framework or its application in

educational evaluation. Rather, it provides the justification that the Bayesian

framework is reasonable.
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8. It assumes, as has been frequently done in the history of statistics, that the

simultaneous holding of different conceptions of probability is justified in

developing pragmatic methods to solve practical problems.
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CHAPTER 2

PHILSOPHICAL FOUNDATIONS AND LITERATURE REVIEW

This literature review consists of three major sections. The first is

concerned with philosophy. It is a contention of the research programme of

which this dissertation is a part is that a solid philosophical foundation is needed

for any methodology of evaluation. Moreover, if one is to be an active participant

in a system that imposes the rewards and punishments of high stakes tests on

individuals and organizations, ethics demands that one is—in some sense of the

term—justified in imposing the consequences. Part I, Philosophical Foundations,

contains (a) an exploration of number of ideas including the importance of

epistemology to this project, (b) various concepts of probability and the history of

their development, (c) a brief general discussion of the Philosophy of Science,

and (d) the derivation of Bayes’s Theorem and relationship of Bayesianism to

induction, confirmation, and the Philosophy of Science. Part II contains a

discussion of Bayesian Statistics and a brief review of educational literature

which uses a Bayesian approach. Part III provides a brief outline of Classical

Measurement Theory. The short description other statistical methodologies

employed, specifically Monte Carlo Simulation, and Design of Experiments, and

Logistic Regression are presented in Chapter 3.
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Part I. Philosophical Foundations

Epistemological Fundamentals

One of the founders of modern Bayesianism, Jeffrey (1980) began a

classic paper with the phrase “The central problem of epistemology is often

taken to be that of explaining how we can know what we do . . .” (p. 225).

Starting an article with this phrase is indicative of the importance Bayesians have

placed on this branch of philosophy. One might even say that some Bayesians

view their methods as a process for doing epistemology.

Audi (1998), a philosopher, indicated that epistemology, “broadly

concerned, is the theory of knowledge and justification” (p. 47). For Audi, this

broad conception must encompass a list of concepts: “belief, causation,

certainty, coherence, explanation, fallibility, illusion, inference, introspection,

intuition, meaning, memory, reasoning, relativity, reliability, and truth” (Audi,

1998, p. 9). Fetzer and Almeder (1993) provided the following, more succinct,

definition, “Epistemology (the theory of knowledge). The study of the conditions

of knowledge and of efforts to resolve the problem of criteria” (p.47). In exploring

the importance of epistemology to the rational person, Audi (1998) stated the

following:

Knowledge and justification are not only interesting in their own
right as central epistemological topics, they also represent positive values
in the life of every reasonable person. For all of us, there is much we want
to know. We also care whether we are justified in what we believe—and
whether others are justified in what hey tell us. The study of epistemology
can help in this quest, even if it often does so indirectly [italics added].
Well-developed concepts of knowledge and justification can play the role
of ideas in human life: positively, we can try to achieve knowledge and
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justification in relation to subjects that concern us; negatively, we can
refrain from forming beliefs we think lack justification, and we can avoid
claiming knowledge we think we can at best hypothesize. If we learn
enough about knowledge and justification conceived philosophically, we
can better search for them in matters that concern us and can better avoid
dangerous pitfalls that come from confusing mere impressions with
justification or mere opinion with knowledge. (pp. 9-10)

But what is this thing called knowledge, so central to epistemology? Audi

(1998) provided the following formulation of this question:

Knowledge arises in experience. It emerges from reflection. It
develops through inference. It exhibits a distinctive structure. The same
holds for justified belief. But what exactly is knowledge? . . . knowing is at
least believing. But clearly it is much more. A false belief is not
knowledge. A belief based on a lucky guess is not knowledge either, even
if it is true. . . .What is not true is not known. (p. 216)

Audi (1998) indicated that Plato “has sometimes been loosely interpreted

as taking knowledge to be justified true belief” (p. 217). Fetzer and Almeder

(1993) in a similar vein, indicated that the standard conception of knowledge is

that “knowledge is warranted, true belief” (p.26). Audi (1998) indicated that

some have stated that knowledge is distinguished from mere belief when it is

“undefeated justified true belief” (p. 217).

Belief is important to knowledge. Beliefs are propositions about

experience (either our own or another’s). Sources of belief are its grounds. Audi

(1998) stated, “We have seen what at least some of the appropriate kinds of

ground are: most basically, perceptual, memorial, introspective, and rational, but

also testimonial and inferential [italics added]” (p. 244). Beliefs are the basis of

propositions. However, Audi (1998), admitting the difficulty of “a straightforward

analysis of knowledge which is both illuminating and clearly correct”, suggested
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that “We might say that knowledge is true belief based on the right way and on

the right kind of ground” (p. 243). Audi (1998) also stated “Knowledge is often

partial . . .. Still, once we get such an epistemic handle on something we can

usually learn more about it” (p. 18). This task of ‘getting an epistemic handle,’

that is, doing something pragmatic to learn, is related to the Bayesian

programme. There are two approaches to getting this handle: Deduction and

induction.

Among others, Reichenbach (1995) contrasted the analytical nature of

deduction with the synthetic nature of induction. Logical deduction is truth

preserving and thus certain in the sense that conclusions must be “wrapped up

in the premises (Reichenbach, 1995, p. 111).” Thus statements that are

deductively logical are analytic or empty. This is in contrast to synthetic

statements which add to our knowledge. Reichenbach (1995) continued, “All the

synthetic statements which experience presents to us, however, are subject to

doubt and cannot provide us with absolute certain knowledge [emphasis added]”

(p. 112). Thus, there is a quandary: Belief and knowledge are closely related,

and knowledge is far superior to mere belief, it may be often unattainable.

Jeffrey (1980) described the quandary of epistemology as follows

[P]hilosophers . . . set themselves the problem of explain how we
can get along, knowing as little as we do. For knowledge is sure, and
there seems to be little we can be sure of outside of logic and
mathematics and truths related immediately to experience . . . the rest,
including most of the theses of science, are slippery or insubstantial or
somehow inaccessible to us. Outside the realm of what we are sure of lies
the puzzling region of probable knowledge—puzzling in part because of
he sense of the noun seems to be canceled by that of the adjective. (p.
227)

Fetzer and Almeder (1993) stated the problem in simpler terms, “[T]he
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fundamental problem confronting epistemology is that at any specific time we

have no way to distinguishing warranted beliefs that are true from warranted

beliefs that are false” (p. 32). Jeffery (1980) proposed to solve the problem by

declaring it a non-problem:

The obvious move is to deny that the notion of knowledge has the
importance generally attributed to it, and to try to make the concept of
belief do the work that philosophers have generally assigned the grander
concept. I shall argue that is the right move. (p. 227)

In this Jeffrey (1980) indicated his debt to Ramsey (1980) in that “The kind

of measurement of belief with which probability is concerned is . . . a

measurement of belief qua basis of action” (p. 227). The statements of Jeffrey

(1980) and Ramsey (1980) raise the questions of the role of belief and

probability in the production of knowledge. This is the topic of the next section.

The Ideas of Probability

The Ideas of Probability: Historical Development

An appreciation for the rich history of the development of probability and

statistics can be gained from reading David (1998), Hacking (1975, 2001), Porter

(1988), Daston (1988) and Kruger, Daston and Heidelberger (1987). One of the

salient points of this history is that the ideas of probability as taught today in a

typical elementary statistics course are fairly new. Describing older conceptions,

Hacking (1975) called probability Janus-faced. The reference to a frequent

representation of the Roman god Janus as having two faces indicates that

probability had two aspects. “Janus, a dual-faced god, presided over all that is



26

double-edged in life. His image was found on city gates, which looked both

inwards and outward, and he was invoked at the start of each new day and year

when people faced both backwards and forwards in time” (Cotterell and Storm,

2006, p. 56). Daston (1988) provided more than two aspects. Daston (1988)

made other points of import to the three faceted research programme

(philosophical, procedural, pragmatic) of this paper is a part. First, that

frequently in the history of probability different concepts of probability were held

simultaneously to solve practical problems3. Second, that a key element of the

Enlightenment (roughly 1680 to 1790) programme was to reduce the thought

process of the most enlightened to a simpler, more procedural form, which could

be used by all. From the perspective of this historical context, the programme of

the modern Bayesians, who take their name from one who lived in the

Enlightenment, may seem all the more appropriate.

The centrality of probability to statistics was described by Savage (1972),

a founder of modern Bayesian statistics, “It is unanimously agreed that statistics

depends somehow on probability” (p. 2). He also stated, “Considering the

confusion about the foundations of statistics, it is surprising and certainly

gratifying, to find that almost everyone is agreed on what the purely

mathematical properties of probability are” (Savage, 1972, p. 2). The source of

this agreement, however, is, fairly recent according to Daston (1988):

3 The methodology of Chapter 3 simultaneously holds Classical Measurement
Theory (with its concept of a True Score and Observed Scores distributed
normally around the true score) and Bayesianism (which views probability as a
personalist degree of belief).
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Although the famous correspondence between Blaise Pascal and
Pierre Fermat first cast the calculus of probabilities in mathematical form
in 1654, many mathematicians would argue that the theory achieved full
status as a branch of mathematics only in 1933 with the publication of A.
N. Kolomogorv’s Grundbegiffe der Wahrscheinlichkeitsrechnung
[Foundations of the Theory of Probability]. . .Although philosophers,
probabilists, and statisticians have since vigorously debated the relative
merits of subjectivist (or Bayesian), Frequentist, and logical interpretations
as a means of applying probability theory to actual situations, all accept
the formal integrity of the axiomatic system as their departure point. (p. 3)

The history of probability theory is intertwined with notions of belief
and opinion, as well as with games of chance and statistics. As Hacking
has pointed out, in the late medieval and early renaissance period
probability was a characteristic of opinion and not knowledge; the latter
was of course, certain. If we take “belief” as a synonym for opinion then
on the traditional view probability is a mark of belief and not of knowledge.
(p. 9)

One would hope that if probability is progressive, as other sciences

(particularly mathematics) are believed to be, that the historical development of

probability would lead us to one definition of probability. Kyburg and Smokler

(1980) stated “It has been said (facetiously) that there is no problem about

probability: it is simply a non-negative additive set function, whose maximum

value is unity” (p. 4). But, as these authors stated, this statement is facetious.

Thus it could be asserted by Savage (1972) that “Virtually all controversy

therefore centers on the question of interpreting the generally accepted

axiomatic concepts of probability, that is, of determining the extramathematical

[italics added] properties of probability” (p. 2). Savage indicated that the

controversy however was—and it must be added remains —great:

[A]s to what probability is and how it is connected with statistics,
there has seldom been such complete disagreement and breakdown of
communication since the Tower of Babel. There must be dozens of
different interpretations of probability defended by living authorities, and
some authorities hold that several different interpretations may be useful,
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that is, that the concept of probability may have different meaningful
senses in different contexts [emphasis added]. (p. 2)

The Ideas of Probability: Six Models of Probability

One could characterize the various approaches to probability with six

models, as presented below.

1. Formal probability.

Formal Probability involves the axioms of the probability calculus. These are

listed in all elementary statistical texts, for example, Berry (1996). Another

formulation, which uses the notation P(a) = “the probability of event a,” is as

follows:

1. 0 < P(a) < 1.0 for all a in A, where A is a probability space

2. Σ P(a) = 1
aєA

3. P(a and b) = P(a) * P(b) if events a and b are independent

2. Empirical Probability and Relative Frequency

Empirical probability is the most familiar of these interrelated models to

students in a course in elementary statistics. It is the simple proportion with

which an event occurs. More formally, the [limit of the] long run relative

frequency of an event occurring as the number of opportunities for that event

approaches infinity provides the relative frequency interpretation of probability.

Kyburg and Smokler (1980) credited Venn’s The Logic of Chance of 1886 with

the first formal formulation of this approach. Von Mises Probability, Statistics

and Truth (1951) contains another exposition. Probability according to the
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empirical/relative frequency notions is sometimes called objective probability,

which distinguishes it from the subjective probability.4

3. Mechanical Probability.

Mechanical Probability is akin to the relative frequency interpretation but is

more deductive than inductive. An example is that of throwing in a perfectly

consistent ‘fair’ manner a perfectly balanced six sided die, with the faces (sides)

numbered 1 to 6. The probability of the die landing with a 1 face up on any given

throw is 1/6. This is also the probability for obtaining the each possible result

(1,2,3,4,5,6). The conceptual difference between Mechanical and Relative

Frequency interpretations has to do with the application of the systems the laws

with which Mechanical Probability can be deduced. One would expect a 1 to

come up 1/6 of the time when throwing the perfectly thrown perfect die an almost

infinite number of times. Thus, there is sometimes equivocation.

4. Logical Probability.

Kyburg and Smokler (1980) used the following description of Logical

Probability, “probability is an undefinable logical relationship between one set of

propositions and another” (p. 11). Kyburg and Smokler (1980) went on to say the

following:

[T]he extreme version of this alternative is to take probability as
representing a logical relation between a proposition and a body of
knowledge, between one statement and another statement (or a set of
statements) representing evidence. Such a view was first formulated

4 The author of this dissertation has wondered, in a humorous vein, if the truth of
the long run relative frequency explanation of probability would imply that the end
of the universe would be delayed if the proportion of heads flipped over the eons
had not equaled exactly half the number of trials.
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explicitly by Keynes [in 1921 in A Treatise on Probability] and has been
defended by Carnap [in 1962 in The Logical Foundations of Probability],
Hintikka [in 1965 in “On a Combined System of Inductive Logic”], and
Kyburg [in 1974 The Logical Foundations of Statistical Inference], among
others. The essential characteristic of this view is this: given a statement,
and given a set of statements constituting evidence or a body of
knowledge, there is one and only one degree of probability which the
statement may have, relative to the given evidence. (p. 5)

5. Subjective or Psychological Probability.

This is the probability a person assigns to an event. Few restrictions are

placed upon this probability. For example, a weatherperson might say that ‘there

is a 60% chance of rain tomorrow.’ Subjective probabilities need not be

‘reasonable.’ For example, a die-hard sports fan might say of their ‘I am 110%

certain of victory in tomorrow’s game.’

6. Personal Probability.

This “view holds that probability measures the confidence that a particular

individual has in the truth of a particular proposition, for example, the proposition

that it will rain tomorrow” (Savage, 1972, p. 3). A personal probability

distinguished from a subjective probability in that relevant probabilities must obey

the probability calculus and principle of coherence. For example, while a person

might have the following subjective (psychological) probabilities of tomorrow’s

weather:

P( rain) = 0.70

P (snow) = 0.01

P (sunshine) = 0.39
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The sum of these probabilities is 1.10, which is more than 1.0 and violates

the probability space. Thus, it is not coherent. “The notion of coherence of a

body of beliefs was first introduced by Ramsey in 1926” (Kyburg and Smokler,

1980, p. 13). Kyburg and Smokler stated, “Having a distribution of degrees of

belief which obey the conventional rules of the probability calculus of

probabilities is a logically necessary and sufficient condition of not having book

made against one” (p. 8). Here they refer to the so-called “Dutch Book” argument

in which a person who has an incoherent set of beliefs regarding a set of events

can be guaranteed to come out a net loser in a series of bets regardless of what

the outcome occurs. Thus, while probabilities of different weather conditions can

add to more than 1.0000 so long as they are subjective/psychological

probabilities, these would not be permitted as personalistic probabilities—and it

is personalistic probabilities that a Bayesian would use. Two points are to be

made. Personalistic probability does not specify which probability(ies) must

change to be coherent. For example, it would be acceptable for the person

realizing the violation of the probability calculus to say “My probability for snow

tomorrow in Detroit, Michigan is 1.0,” even if the it is July 14 and today’s

temperature has ranged between 87 and 103. Second, the literature sometimes

uses the word “subjective” to discuss all degrees of belief. This leads to

confusion.
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Philosophy of Science

The primary question of the Philosophy of Science can be expressed as

follows: what is it about science that justifies its epistemological claim relative to

other forms of attempts to provide explanations for the world (Kasser, 2006a)? 

In other words, what is it about science that gives science its unique epistemic

claim as a special way to discover knowledge?

General Ideas

It is a contention of this paper that Bayes’s Theorem provides a useful link

between the Philosophy of Science (discussed in this section) and the theory of

probability (discussed in the prior section). However, an understanding of the

Philosophy of Science is logically prior to any exploration of the position of

Bayesians. In addition, as it is an assumption of this study that educational

evaluators strive to be scientific—or more accurately, that given a choice, they

would prefer methodologies of educational evaluation that have a more solid

scientific basis to those with less scientific basis. Thus, an exploration of what it

means to be scientific is in order.

Present ideas of science are rooted in empiricism. However, this view of

science—which means theories are susceptible to confirmation by observation or

experimentation or that they are susceptible to falsification, particularly by

statistical methodologies—is rather new in human thought. Reichenbach (1995)

described the perspective of the classical writer as follows:
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To Plato, however, the concept of empirical knowledge would have
appeared an absurdity. When he identified knowledge with mathematical
knowledge, he wanted to say that observations should play no part in
knowledge . . . Arguments from probabilities are impostors, so we learn
from one of Socrates’ disciples in the dialogue Phaedo. Plato wanted
certainty, not the inductive reliability which modern physics regards as its
only attainable goal. (p. 106)

Reichenbach (1995) indicated, “Plato. . . regarded mathematics as the

supreme form of all knowledge. His influence has greatly contributed to the

widespread conception that unless knowledge is of a mathematical form it is not

knowledge at all” (p. 106). Reichenbach (1995) first quoting Plato’s Republic VII,

indicated:

“Whether a man gapes at the heavens or blinks on the ground,
seeking to learn some particular of sense, I would deny that he can learn,
for nothing of that sort is matter of science”. . . [Reichenbach stated]
Empirical Science could not be rejected more strongly in these words,
which express the conviction that knowledge of nature does not require
observation and is attainable through reason alone. (pp. 529-30)

Thomas Aquinas (1225-1274) stated in the Suma Theologica (excerpt in

Westphal [1995]), “But the other three intellectual virtues, namely wisdom,

science, and understanding, are about necessary things [italics added]. . .”

(p. 11). Hacking (1975) stated the following about the development of science

and probability:

In scholastic epistemology opinion was probable when well
attested. Then the world began to testify by its signs. So the probable
sign is the sign through which the world gives testimony. Frequency and
credibility are thus linked. When conventional and natural sign are finally
distinguished, it is the latter that furnish ‘internal’ evidence. With these
transformations, in hand, the dual concept of probability was possible. (p.
180)
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Speaking of René Descartes’ (1596-1650) profoundly influential cogito

ergo sum (‘I think, therefore I am’—Descartes’ attempt to achieve sound basis

from which to start reasoning) Reichenbach (1995) stated, “The interesting

question is: how is it possible that a logical issue, the attainability of certainty,

was dealt with by a maze of arguments composed of [logical] tricks and theology

. . . “ (p. 100). Reichenbach (1995) summed up the logical/philosophical vs. the

empirical approaches as follows:

The kind of philosophy which regards reason as a source of
knowledge of the physical world has been called rationalism. This word
and its adjective rationalistic must be carefully distinguished from the word
rational. Scientific knowledge is attained by the use of rational methods,
because it requires the use of reason in application to observational
material. But it is not rationalistic. This predicate would apply not to
scientific method, but a philosophical method which regards reason as a
source of synthetic knowledge about the world and does not require
observation for the verification of such knowledge. (p. 107)

He [the scientist] would insist that observation cannot be omitted
from empirical science and would leave to mathematics merely the
function of establishing connections between the various results of
empirical investigation. (p. 106)

Hacking (1975), commenting on the development of science, stated the

following:

Opinion was the staple of low science while knowledge was the
goal of high science. Paracelsus was the ‘Luther of the physicians’, as
Copernicus was the Luther of the astronomers. One consequence of their
twin revolution was that knowledge and opinion, formerly disparate,
entered the same league. Or rather, what happened was that a
substantial part of the potential domain of knowledge, including astronomy
and the investigation of motion, became part of the domain of opinion. In
the writing of Hume, the term ‘knowledge’ is reserved for pure
mathematics. This agrees with the scholastic conception of knowledge as
demonstration from first principles. But Aquinas though one could
demonstrate causes and thereby explain why things are as they are. For
Hume, demonstration is a matter of the ‘comparison of ideas’. This
operation can be performed chiefly in the realm of mathematics. Cause,
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on the other hand, is relegated to the other scholastic category that Hume
variable calls ‘opinion’ or ‘probability’. Once the concept of internal
evidence was established by 1669, the final transformation needed for the
skeptical problem of induction was this transference of causality from
knowledge to opinion. (p. 180)

Chalmers (1995) indicated that philosophers of science seek to be both

descriptive and prescriptive. Thus, they seek not merely to accurately describe

the process by which the scientific community arrives at what is accepted as

scientific knowledge, but also to guide practicing scientists by suggesting

procedures that are in some sense ‘better’ to follow. Mayo (1996) indicated that

“Defenders of the Bayesian Way can and do argue that even if scientists are not

conscious or unconscious Bayesians, reconstructing scientific inference in

Bayesian terms is of value in solving key problems of philosophy of science” (p.

102). However, Mayo (1996) rejected the contention that Bayesians have

anything of value to say about science either prescriptively or descriptively. In

doing so Mayo (1996) employed an analogy comparing the Bayesian view of

science to viewing the Mona Lisa as a possible result of a paint-by-numbers kit.

Mayo’s Da Vinci would protest “I assure you I did not create it by means of a

paint-by-numbers algorithm. Your ability to do this in no ways shows that the

paint-by-number method is a good way to produce new art” (p. 101). It is beyond

the scope of this paper to settle this ongoing and vitriolic debate. However, it

does indicate that the philosophical justification for the use of any Bayesian

approach does entail a discussion of the philosophy of science.

Chalmers (1995) stated, “The laws and theories that make up scientific

knowledge make general assertions . . . and such statements are called
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universal statements” (p. 3). Such universal statements contrast with “singular

statements [which] . . . refer to a particular occurrence or state of affairs at a

particular place at a particular time” (p. 3). The process of science is the arrival at

new universal statements.

Salamon (1966), among many others, has drawn an important distinction

between deduction and induction, “Questions of deductive validity are generally

referred to systems of formal logic, and they usually admit definite and precise

answers. Questions of inductive correctness are far more frequently answered

on an intuitive or common-sense basis” (p. 111). If all scientific theories could be

deduced from known first principles, then the philosophy of science would be as

absolute as a deductive logic. In other words, with the truth of the premise

established, the conclusions must be definite, precise, and true. This is because

deductive logic is ‘truth preserving.’ Fretzer and Admeder (1993) indicated that

the price for this truth preserving quality is that conclusions reached by deduction

are analytic, that is, they are contained (though hidden until demonstrated by

syllogism) in their premises (p. 5). However, little progress can be made in

science through mere deduction from established first principles. It is the function

of science to establish these first principles. Fetzer and Admeder (1993)

indicated that synthetic knowledge is necessary to provide information about the

world (p. 6).5 Such syntheses require induction. Thus Popper was able to state

“The empirical basis of objective science has nothing “absolute” about it” (p. 63).

5 However, Fetzer and Almeder (1993) also indicated that the status of the
analytic/synthetic distinction is not completely resolved (p. 6).
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Models of Science

There are perhaps as many approaches to science as there are

philosophers of science and scientists. Twenty-five of the major approaches to

or issues in the Philosophy of Science are listed below, and several will be briefly

described in this section. Kasser (2006a) discusses most of the listed topics,

and many of the brief descriptions below draw on his work. The section ends

with concluding comments on the Philosophy of Science and the philosophical

approach of Bayesianism. The list follows:

1. THE Scientific Method
2. Classical Approaches (Descartes, Newton,)
3. Classic Empiricism (Loch, Berkley, Hume) and "Hume's Guillotine"
4. Mill’s Methods
5. Bridgman’s Operationalism
6. Induction by Enumeration
7. Induction to the Best Explanation
8. Realism vs. Empiricism
9. The Problem of Demarcation (Being too permissive vs. being too restrictive

with respect to what is and is not called science)
10. Naturalism and Instrumentalism
11. The Hypothetico-Deductive Method
12. Logical Positivism
13. Hemple’s Covering Law
14. Popper’s Falsificationism and Corroboration
15. Putnam’s Historical Approach
16. Fisher and Neymann-Pearson Hypothesis Testing
17. Kuhn’s Paradigms, Incommensurability, and Normal Science
18. Lakatos’s Scientific Programmes
19. Quine’s Holism and the Web of Belief
20. The Statistical Design of Experiments (DoE) of Box, Hunter and Hunter
21. Duhem’s Problem and the Role of Ancillary Hypotheses
22. Van Fraasen Answers to Why Questions
23. The Strong Program of the Sociology of Knowledge
24. Laudan’s Pessimistic Induction
25. Sociological Approaches, Radical Critiques, and Feyerabend’s Anarchy
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THE scientific method.

Many people learn about a method called “THE Scientific Method” in high

school and college. The word THE is emphasized because it is frequently taught

as THE way to do science and as well as the way science is done. The following

nine step process, draws not only on the type of presentation one might receive

in pre-college (and even college) education, but also on Hemple (1966). In

addition a “pre-step,” numbered zero, is included. This is to start with a question

of interest (at the pre-college level, this is often described as “choose a topic”).

As discussed below, this step is actually profound, touching on the theory-

ladenness of observation and the necessity of auxiliary hypothesis. The method

below includes the inductive steps (1, 2 and 4 below), a review of literature (step

3, which could save many engineers a lot of work), plus prediction and testing

(steps 5 and 6) plus replication (step 7) and use of the knowledge (step 8) and/or

an iterative approach (steps 9):

0. Start to think about a question of interest
1. Observation
2. Analysis of the observed data
3. Literature review (a step frequently skipped in pre-college work and

industry)
4. Formulation of a hypothesis
5. Test the hypothesis (experiment)
6. Accept or reject the hypothesis based on the experiment
7. Replication (ideally by another experimenter at another location using

other equipment and possibly slightly different methodology)
8. Use the knowledge gained through science to control nature
9. Begin again at step 1 with a more precise hypothesis.

In general, when one learns THE scientific method at the pre-professional

level the specifics of steps 5 and 6 are not well specified. The most popular
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specification of this is to be found in statistical hypothesis testing.

Classical approaches.

Philosophy of Science has been part of science since the Greeks,

including Plato and Aristotle. While the Scholastics looked at knowledge as

something which could not be a product of induction, later scientists and thinkers

such as Bacon, Galileo, Descartes, and Newton sought a method of discovery

that would be self-justifying. Part of the Enlightenment programme was to

reduce complex intellectual work to procedures. Later developments split

discovery and justification into two phases, as in THE scientific method, above.

Classical empiricists.

The Classical Empiricists, such as Locke, Berkeley, and Hume pointed

out the great costs we pay when we insist that all of our knowledge must come

from observation. John Locke stated, for example, that we do not hear or see a

dog, rather we only have ideas (sense impressions) of the dog and are incapable

of understanding how we have these ideas since we do not directly experience

their object. George Berkeley went several steps further, stressing that as all we

have is the sense impressions there is no dog, just the idea of the dog put in our

minds by God. He did require that the ideas in various minds were coordinated

in law like fashion and that it was possible for us to make predictions based on

the patterns of these ideas. Hume pointed out that we never see a cause and

effect relationship (for example, we do not see a billiard ball strike another and

cause it to move, we only see the first billiard ball touch the other and the second

move) (Kasser, 2006a). 
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Operationalism.

An influential approach by a Noble prize-winning physicist, P. W.

Bridgman, operationalism, “requires that scientific terms be defined in terms of

operations of measurement and deduction” (Kasser, 2006). This approach had

a great deal of influence on scientists early in the 20th century. Among these

was a student of physics, W. Edwards Deming, who became the leading

statistician of the post-war (post World War II) “Quality Movement.” As a

prerequisite for quality, Deming stressed the need for operational definitions

which have three parts: a) a process of measurement in statistical control, b) a

criterion, and c) a decision. For example, to determine if a train is on time, one

might refer to a specific clock in the train station, the criteria would be that the

train is completely stopped (no forward momentum) and the passenger doors are

open at the specified location on the station platform at 6:14, and the decision

would be that as the train was at rest with the doors open at 6:14 according to

the clock in the train station, then it was on time.

Operationalism has also had a profound effect on certain approaches to

psychology, where certain diagnoses (for example, depression) are defined as

certain scores on certain tests (Kasser, 2006a). Classifying a student as

meeting state standards if they achieve a certain score (or higher) on a

standardized test on a given day is an example of operationalism.
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Induction by enumeration.

Induction by enumeration is a “common sense” way of doing induction,

and to some degree, science. The classic example of induction by enumeration

as the sun always has rises in the morning, it will rise tomorrow morning.

However, this falls short of science because it does not explain how it is that the

sun has risen in the past and will rise tomorrow. Moreover, without a good theory

for the continued rising of the sun, a case could be made that there is some

mechanism with just so many ‘rises’ and today’s could have been the last.

Chalmers (1995) summed up the “naive inductivist position” by saying “science is

based on the principle of induction, which we can write: If a large number of As

have been observed under a wide variety of conditions, and if all those observed

As without exception possessed the property B, then all As have the property B”

(p. 5). This lack of currency of this approach to science was summed up by

Salmon’s (1966) statement, “Not since Francis Bacon has any empiricist

regarded the logic of science as an algorithm that would yield all scientific truth”

(p. 112-3).

Logical positivism.

Logical Positivists, are responsible for developing the Philosophy of

Science as a (sub) discipline. They sought not so much to offer proscriptive

advice as to how scientists should proceed but to provide rational

reconstructions of a scientific theories, that is, to reconstructions which

demonstrated the special epistemic place of science. Among the most important
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members of this group are A. J. Ayer, Rudolf Carnap, and Carl Gustav Hempel.

Developing in Vienna and Berlin, many of the Logical Positivists fled Nazi

Germany for the United States. They were empiricists, stressing that all science

had to relate to what could be observed. In fact, they wanted to drive every

vestige of metaphysics out of science—saying that unscientific statements were

meaningless. They stressed the linguistic and formal aspects of theories, and

their “conception of how scientific theories work was so influential that it is

generally called the ‘received view of theories.’ ” (Kasser, 2006b, p 29).

Kasner’s discussion of Logical Positivism below is particularly important when

considering the methodology of the present dissertation:

[In the received view there a deductive system and] The statements of a
deductive system are uninterrupted, they are purely syntactic. They
exhibit themselves in logical relationships, nothing more. The deductive
system gets interpreted when observational terms get explained
observationally. All interpretation for the Positivists comes through
observation. The logical structure of the theory then lets meaning flow
around the system and many statements of the theory only receive a
partial interpretation in observational terms, so they are not
straightforwardly true or false. Statements involving theoretical terms are
considered something like inference tickets not as descriptions of the
world. (Lecture 25)

The name Logical Positivism derives from two philosophical trends. The

first term logic, is related to the advances in logic which began about 1870. The

second, Positivism, refers to Compt’s Positivism. Compt saw humanity as

passing through three stages, the religious, the symbolic, and the positive

(Kasser, 2006a). The Logical Positivists were hostile to metaphysics, believing

that “any cognitively meaningful statement must be analytic or it must be a claim

about possible experience” (Kasser, 2006a).
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They were interested in the relations among ideas, not in matters of fact.

They saw the purpose of Philosophy as being “to clarify linguistic problems and

exhibit the relationships between scientific statements and experience” (Kasser,

2006a). They focused on “sentence sized” rather than “word sized” terms. They

stress the logical relationship among statements. Thus it is appropriate to note

that sentences can be viewed from three perspectives:

• Formal, that is logical,

• Semantic, that is, to what do they refer, and

• Pragmatic, to what use are they put (Kesser, 2006a).

Hempel’s covering law.

Kasser (2006a) considers Hempel’s Covering Law the “centerpiece of

logical positivism’s philosophy of explanation” and that it dominated the field of

Philosophy of Science for decades. He describes it as treating “explanation as

the derivation of the explanandum [thing explained] from an argument containing

at least one law of nature.” Okasha (2002), says that Hempel’s method for

answering a why question regarding a phenomenon that actually occurs, such as

why does sugar dissolve in water,

[W]e must construct an argument whose conclusion is ‘sugar dissolves in
water’ and whose premises tell us why this conclusion is true. The task of
providing an account of scientific explanation then becomes the task of
characterizing precisely the relation that must hold between a set of
premises and a conclusion, in order for the former to count as an
explanation of the latter. . . .
Hempel’s answer to the problem was three-fold. Firstly, the premises
should entail the conclusion, i.e., the argument should be a deductive
one. Secondly, the premises should all be true. Thirdly, the premises
should consist of at least one general law. . . such as ‘all metals conduct
electricity. . . (p. 41)
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A problem with the Covering Law is the direction of causality. For

example, Okasha (2002) illustrates this with the example of a flagpole’s shadow.

The general laws (light travels and in straight line and the laws of geometry)

combined with particular facts (the angle of elevation of the sun and the height of

a flagpole) explain, under the covering law the length of a shadow. However,

using the same general laws but exchanging the conclusion for one of the

particular facts, the length of the shadow explains the height of the flagpole.

While it is consistent with our common sense understanding that the height of

the flagpole (along with laws of nature) will cause the shadow to be of a certain

length, we reject the possibility that the length of the shadow causes the height

of the pole—although the Covering Law, considered by some a high point of

logical positivisms (which is concerned with linguistic relationships)—seems to

accept either conclusion.

Hypothetico-deductive method.

The essence of the Hypothetico-Deductive Method is to insist that the

theory logically entails empirical evidence. Salmon (1966) describes the

Hypothetico-Deductive method as follows:

From a hypothesis, in conjuction with statements of initial
conditions whose truth is not presently being questioned, a prediction is
deduced. Observation reveals that the prediction is true. We conclude that
the hypothesis is confirmed by this outcome. The inference is, as certain
nineteenth-century theorists insisted, an inverse of deduction. By
interchanging the conclusion with one of the premises it can be
transformed into a valid deduction. (p. 115)
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Realism vs. empiricism.

The Logical Positivists were Empiricists, and empiricism has had a strong

hold on the Philosophy of Science, particularly since Einstein (Kasser, 2006a).

But there is a tension between seeking an explanation (which often requires

positing unobservable objects, such as atoms) versus requiring some grounding

in experience (a counter-example being the apparent demise of string theory in

physics). Those who seek the ‘real’ explanation, even if it means positing

unobservable objects (such as quarks or True Scores) are called Realists.

Those who believe science must confine itself to that which is observable are

Empiricists. Kasser (2006a) points out the importance of this essential tension in

the Philosophy of Science—how to reach the aspiration of science for a good

explanation of the natural world while insisting on some grounding in ‘fact’ (or

data).

Lauden’s pessimistic induction.

Kesser (2006a) summarized Lauden’s Pessimistic Induction as follows:

“Most successful scientific theories have turned out to be false, so we should

expect that currently successful theories will turn out to be false.” Among the

later falsified theories are not only the wave theory of light (which almost every

19th century physicist thought true), but the most successful of all theories,

Newton’s mechanics (Kesser, 2006a).
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The problem of demarcation.

A fundamental problem in nearly every approach to the Philosophy of

Science is how to construct a demarcation so things that should be science are

not excluded (for example, atomic theory) while excluding things that are

generally considered non-science (for example, astrology).

Poppers falsification and corroboration.

A problem with the naive inductive and hypothetico-deductive methods is

that there are a potentially an infinite number of causes consistent with an effect

(see subsection on Duhen’s Problem below). For example, the success of an

experimental prediction that the sun will rise tomorrow morning could be used as

confirmation of the theory that the sun revolves around the earth as well as that

the earth revolves around the sun.

Although the evidence can support any one of a number of

theories, Chalmers (1995) indicated, “The falsity of universal statements can be

deduced from suitable singular statements. The falsificationist exploits this

logical point to the full” (p. 39). Thus the position Popper and his falsificationsists

followers is that science should produce highly falsifiable hypotheses, the bolder

the better. He viewed bold hypotheses which have not been falsified by

strenuous tests as corroborated, although tentatively. In addition, as Popper

never admits an hypothesis can be supported, much less proven, he writes of

the importance corroboration, his “term for theories or hypotheses that have
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survived serious attempts to refute them. Because Popper insists that

corroboration has nothing to do with confirmation, he claims we have no reason

to think corroborated theories more likely to be true than untested ones (Kasser,

2006). This seems related to the term undefeated in the definition of knowledge

as ‘undefeated warranted true belief.’

Fisher and Neymann-Pearson statistical hypothesis testing.

Closely related to Poppers Falsificationism is the Statistical Hypothesis

Testing approach of Sir R. A. Fisher. Another closely related approach is that of

J. Neymann and Egon Pearson. The uncomfortable union of these two

approaches is what is generally taught in statistics courses:

1. Choose a null hypothesis (and an alternative hypothesis in the Neymann-
Pearson approach)

2. Choose a significance level and test statistics. The significance level
determines at what level of result is said to be statistically significant.

3. Run the (randomized) experiment
4. Calculate the value of the test statistic. If the test statistic is in the “critical

region” reject the null hypothesis: (a) in the Fisherian paradigm, this lack of
rejection implies nothing about what is to be held; (b) in the Neymann-
Pearson paradigm, this rejection is in favor of the alternative hypothesis.

Statistical design of experiments (DoE).

Design of Experiments (DoE) which is a group of methods for varying

more than one factor at a time deeply influenced by Sir R.A Fisher, is an

influential approach to doing science among statisticians (who frequently assist

scientist and engineers). A classic exposition is Statistics for Experimenters by

Box6, Hunter, and Hunter (1978), affectionately referred to as BH2. The first

6 George E. P. Box was Fisher’s son-in-law.
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chapter of BH2 contains a discussion of the Philosophy of Science, including an

illustration reminiscent of Plato’s cave analogy. It recommends an iterative

approach with each stage of experimentation suggesting a refined (or new)

hypothesis, which explored through statistically planned experimentation.

Statistically planned experimentation obtains a great deal of empirical

information (that is, predictive equations) from a relatively small number of

experimental runs. Also, Box’s famous (at least among applied statisticians)

quote is worth noting: “All models are wrong; some models are useful.”

In practice, using DoE frequently begins with a screening experiment to

find promising (probably influential) factors and goes on to build an Empirical

Response Surface Model. These models can be linear, quadratic, or higher

order. The methodology stresses empirical models and prediction rather than

explanation. In this way it is similar to positivism.

Putnam’s Historical Approach.

In the 1970s another approach to philosophical reference not only made

the discussion on unobserved objects seem more reasonable, it counteracted

some of the excessive concerns on Kuhn and Fierabend concerning

incommensurability (see below). This is the Causal Chain-Historical approach of

Putnam and others. What this approach does is link reference to a causal chain.

Thus, the wave theory and particle theory of light are theories about the same

‘stuff,’ light, not incommensurable theories about different thing. This approach

also marked the beginning of the end of Logical Positivism (Kassner, 2006a).



49

This was, among other reasons, because this approach made sense that there

was a necessity of identity, as opposed to the Logical Positivist idea that all

necessity was formal and logical. Thus, “the Causal-Historical approach

provides promising resources for enriching semantic access to the world”

(Kassner, 2006, Lecture 25).

Kuhn’s paradigms.

The methods discussed in the sections above share, to a greater or lesser

extent, the theme of the objectivity of science. Perhaps the most influential

departure from--or more precisely, variation--on this theme is that of Thomas

Kuhn’s (1970) The Structure of Scientific Revolutions, which has been called by

some the most influential book of the 20th century (Kasser, 2006a). Kuhn made a

distinction between normal science and a paradigm shift. In normal science a

disciplinary matrix exists in which scientists engage in puzzle solving within a

framework. [Khun (1991) preferred the term disciplinary matrix to paradigm in his

later work.] A paradigm shift, or scientific revolution, takes place when normal

science can no longer solve puzzles. Eventually, a scientific revolution takes

place and the new disciplinary matrix constitutes the basis for forthcoming

normal science. This new disciplinary matrix is incommensurable with that

existed before the ‘revolution.’ Khun’s approach involves looking at the scientific

enterprise as predicting “theories as structured wholes” (Chalmers, 1995, p76).

Note: The present work can be seen as an exercise in normal science,

although it crosses several paradigms and has implications for a ‘crisis’ in the
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practice of educational measurement, it uses existing scientific tools and

theories.

Lakatos’s Scientific Programmes.

The work of Lakatos (1970) shares with Kuhn (1995) a sociological rather

than ‘objective’ descriptive view of science. Chalmers (1995) explained Lakatos’

view of the scientific enterprise in terms of ‘research programmes’ which have a

‘hard core’ which remains unchallenged as long as the research programme

does not become ‘degenerative.’ Until that time scientists work in the ‘protective

belt’ around the ‘hard core.’ It is hypothesis in this belt which can be rejected,

(almost) never the hard core—at least until the programme becomes

degenerative. Lakatos offered little advice on how to determine if this

degenerative phase has been entered.

Duhen problem (also called the Quine-Duhen thesis).

The discussion above points out that while science strives to discover

universal statements, it is difficult to develop experiments which test (form a

confirmationalist or falsificationist perspective) one and only one hypothesis. This

is called the Duhen Problem (or the Quine-Duhen Thesis). Fetzer and Almeder

(1993) described it as follows:

The view that hypotheses, even in science, are never subject to
empirical test one by one but only in sets. The results of observations and
experiments, for example, typically depend upon various assumptions
other that the truth or falsity of the hypothesis under investigation. These
may concern background knowledge . . . auxiliary hypothesis . . .and initial
condition [emphasis added]. (p. 42)

Fetzer and Almeder (1993) used the following example of the Duhen

Problem: The bishops of Padua may not have been narrow-minded in their
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refusal to look through Galileo’s telescope. Rather they realized that implicit in

the use of this unproved instrument was an auxiliary hypothesis. Thus, Galileo

was not providing conclusive evidence about the movement of the heavens (p.

42). Kasser (2006a) discussed Quine metaphor of a “Web of Belief.”

Generally, one can change an element of the web as long as one is willing to

make adjustments on another element. In addition, one often makes changes

around the periphery of the web without changing the center.

Radical critiques.

As Chalmers (1995) pointed out—and as one gains from the insights of

Khun, Quine, and Lakatos—all observations are theory laden. This has led to

some fundamental criticisms of the scientific enterprise. Among the critics is

Feierabend. The cause of his criticism—in the Aristotelian sense of final cause

that is the ultimate reason for this criticism — is that people should be free from

the tyranny of science. (It might be more accurate to be free from the tyranny of

scientists or the users of science, e.g., eugenicists.) At its most extreme, some

critics say that science is only sexist, racist mythology, or, less polemically, a way

of knowing and possibly controlling what world which has no more intrinsic

validity than literature or magic. These ideas were most dramatically presented

during the “Science Wars” of the 1990s (Kasser, 2006a). At its simplest, the

scientific programme could be summed up by George Box, “All models are

wrong, some models are useful.” Thus, pushing Box into a corner, one may see

the ‘theory’ of gravity as a myth, but it is certainly a helpful myth when one is
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trying to decide about how best to get off a 30 foot ladder. As discussed below,

the idea of the Bayesians of probability as a degree of belief helps this quandary.

Concluding comments on the philosophy of science.

Salamon (1966) stated “Hume’s problem of the justification of induction

remains at the foundations of scientific inference to plague those who are

interested in such foundational studies” (p. 132). Hume, rightly, pointed out that

induction is never certain. Thus, one engaged in the scientific enterprise, which

has as its purpose the development of universal ‘truths’ which are by nature

synthetic, can not only never be as sure as when relying on deduction, buy also

one can never be sure at all. Lauden’s Pessimistic Induction points out that

many theories which were accepted by almost all scientists at a point in time

(Newton’s physics or the wave theory of light) have eventually been found to be

false. Lauden asks if given that this is true of what was at some point

considered our best science (and one might add science is our best and most

successful way about gaining ‘knowledge’ of the world), how can we ever claim

to have knowledge? (Kasser, 2006a)

As discussed in the next section, the Bayesians have cut this Gordian

Knot by seeing issues associated the knowledge of truth as non issues by

replacing knowledge with ‘degrees of belief.’ One of these positions is

summarized by the statement by Howson and Urbach (1993) that “[the] Bayesian

approach is the only one capable of representing faithfully the basic principles of

scientific reasoning” (p. 2).
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Bayes’s Theorem and the Philosophy of Science

Figure 3a and 3b: Portraits of Thomas Bayes. 3a on the left is in the public
domain. 3b is reproduced with permission from Professor Soshichi Uchii. It
includes Bayes’s Theorem Bayes holds an illustration from his 1763 article

Rev. Thomas Bayes, FRS (1702-1761) was an English Non-Conformist

cleric whose posthumously 7 published work provided (1763) a proof of what has

come to be known as Bayes’s Theorem. Although Laplace’s later formulation is

perhaps more important and Stigler (1999) has pointed out it is possible that

another person ‘discovered’ Bayes’s theorem, it is from the Bayes that the both
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the school of statistics and the school of Philosophy of Science takes their

names.

Salmon (1966) says of Bayes’s Theorem “As a theorem in the

uninterrupted calculus of probability, it is entirely noncontroversial” (p 116).

Before turning to the meaning of the theorem that generates controversy, the

following derivation of the theorem from the calculus of probabilities is provided.

In this exposition Bayes’s Theorem is noncontroversial because it is based on a

manipulation of the definition of conditional probability in Equation (1) below.

The following notational conventions are used:

P( a ) indicates the probability (however defined) of the “event a”. 

P(a ∩ b) indicates the probability of intersection of events a and b, that is,

the probability that both “event a” and “event b” occur.

P(a | b) indicates the probability of “event a” occurring given that “event b”

has occurred.

Note: As, in algebra, any letters can be used (consistently) rather than a

and b, for example e and h. Thus equations (1a) and (1b) are both formulations

of the definition of conditional probability.

P (h | e) = P (e ∩ h) / P(e) (1a) P (e | h) = P (e ∩ h) / P(h) (1b)

7 On conjecture as to why Bayes did not publish this article during his lifetime is
that it might be theologically suspect.
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Multiplying both sides of 1a by

P(e)

Multiplying both sides of 1b by

P(h)

P (h | e) P(e) = P (e ∩ h) (2a) P (e | h) P(h) = P (e ∩ h) (2b)

Note that the left hand side of 2a and the left hand side of 2b both equal

P (e ∩ h), thus they are equal. Thus

P (h | e) P(e) = P (e | h) P(h) (3)

Dividing both sides of the equation by P(e)

P (h | e) = P (e | h) P(h) (4)
P(e) , P(e) ≠ 0

Equation (4) is called the classic statement of Bayes’s Theorem (Kasser, 2006).

However, it is known that

n
P(e) = Σ P (e | hi) P(hi)

i =1 (5)

where hi, i = 1 to n are mutually excusive and exhaustive events and
.
.

n
Σ P(hi) = 1

i =1

Substituting 5 into 4

P (h | e) = P (e | h) P(h)
Σ P (e | hi) P(hi)

(6)
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However, in a dichotomous case

P (h | e) = P (e | h) P(h)__________________
P (e | h) P(h) + P (e | not h) P(not h)

(7)

Dividing top and bottom of the right hand side by P (e | h)

P (h | e) = P(h)_____________

P(h) + P (e | not h) P(not h)
P (e | h)

(8)

Dividing top and bottom of the right hand side by P(not h)

P (h | e) = __P(h)__
P (not h)__________

P(h) + P (e | not h)
P(not h) P (e | h)

(9)

Bayesians generally supply the following meanings in equations 10 through 15 to

the terms of Bayes’s Theorem:

P (h | e) = P (hypothesis is true | evidence) (10)

P (e | h) = P (evidence of experiment | hypothesis is true) (11)

Equation 11 is also called the likelihood of the evidence given the hypothesis is

true. It is sometimes referred to as a “data probability.”
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P(h) = P (hypothesis is true prior to seeing experimental evidence) (12)

Equation 12 is called the prior probability.

P (e | not h) = P(evidence of experiment | hypothesis is not true) (13)

Equation 13 is also called the likelihood of the evidence given the hypothesis is

not true. It is another data probability.

P(not h) = P(hypothesis is not true prior to having experimental evidence) = 1- P(h)

(14)

Given the meanings in 10 through 14 above, Bayesians give the following

controversial meaning to Bayes’s Theorem (Equation 7 above):

P (hypothesis is true | evidence) =

P(evidence | hypothesis is true) * P (hypothesis is true before we have evidence) (15)
P(evidence | hypothesis is true) * P (h) + P(evidence | hypothesis is not true)*(1- P(h))

Kasser (2006a) has provided a succinct summary of the two positions that

define the Bayesian approach as well as describing its impact on both science

and the Philosophy of Science:

Bayesian conceptions of probabilistic reasoning have exploded onto the
philosophical and scientific scene in recent decades. Such accounts
combine a subjectivists interpretation of probability statements with the
demand [emphasis added] that rational agents update their degrees of
belief in accordance with Bayes’s Theorem (which is itself an
uncontroversial mathematical result [from the definition of conditional
probability]. (Kasser, 2006)

Chalmers (1995) in a section entitled “The Retreat to Probability” criticized

probabilistic approaches to science, and one would assume the Bayesians, as

follows: “Their [the inductivists] technical programme has led to interesting

advances within probability theory, but it has not yielded new insights into the
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nature of science” (p. 19). However, Salmon (1966), who has been described as

an empirical Bayesian by Fetzer and Almeder (1993, p11), summed up the

importance of Bayes’s Theorem as follows:

Bayes’s Theorem casts considerable light upon the logic of
scientific inference. It provides a coherent schema in terms of which we
can understand the roles of confirmation, falsification, corroboration, and
plausibility. It yields a theory of scientific inference that unifies such
apparently irreconcilable views as the standard hyothetico-deductive
theory, Popper’s deductivism, and Hanson’s logic of discovery. (Salmon,
1966, pp. 120-1)

Kasser (2006) echoes some of the same philosophical aspects of

Bayesianism as Salmon: “Bayesianism is a remarkable programme that

promises to combine the positivists’ demand for rules governing rational theory

choice with a Kuhnian role for values and subjectivity (Kasser, 2006).” This was

amplified by Howson and Urbach (1993), among the strongest proponents of

Bayesianism, who say of an equivalent of Equation 9 above:

From the point of view of inductive inference, this is one of the most
important forms of Bayes’s Theorem. For Since P(~h) = 1-P(h), it says
that P(h|e) = f ((P(h), P(e|~h)/P(e|h)) where f is an increasing function of
the prior probability P(h) of h and a decreasing function of the likelihood
ratio P(e|~h)/P(e|h). In other words, for a given value of the likelihood
ratio, the posterior probability of h increases with it prior, while for a given
value of the prior, the posterior probability of h is the greater, the less
probable e is relative to ~h than to h. (pp. 28-29)

Numerous books and more numerous articles have been written to carry

on the debate between Bayesians and their opponents as to the reasonableness

of applying scientific/epistemological meaning to Bayes’s Theorem. Howson and

Urbach (1993), Mayo (1996) and Earman (1992) and Kaplan (1996) are

particularly worth reading. This paper takes the less extreme, more pragmatic,
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position that a Bayesian approach:

• Is not unreasonable (has some support among the scientific community),

and

• Is possibly useful in solving a practical problem of educational evaluation.

Again, Bayesianism is not universally accepted, either in statistics or

philosophy. For example, Wayne State University, a Carnegie I institution, does

not have a statistics course devoted to Bayesian statistics. There is, however, a

seminar in the Department of Philosophy on Bayesian Confirmation Theory.

Most introductory texts are Frequentist in nature, Berry (1996) being an

exception. Hoeting (2005) stated that more and more statisticians are viewing

Bayesian methods as just tool in the statistical tool box rather than a point of

honor [the present authors paraphrase]. Among the reasons are the increasing

advances in computing. Yen (2006), for example, indicated that Markov Chain

Monte Carlo techniques, at the core of many applied uses, are “easily

implemented using existing software packages or programming languages, e.g.,

WINBUGS (Spiegelhather, Thamas, & Best, 2000), S-Plus (MathSoft, 1995) or

FORTRAN (Baker, 1998),” However, anyone with a passing acquaintance use

of any of these programming languages knows the words “easily implemented”

might be better stated as ‘easily implemented by researchers with skill in

statistical programming.’ Guthrie (2006) during an introductory seminar on

WINBUGS indicated that the program is far from intuitive and that people learn

to use the program from other people who have learned to use the program.

Thus, while there are web based applets and software macros (e.g., Albert,
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1996) aimed at students who are learning statistics at an introductory level,

introductory statistics are predominately Frequentist or Data Analytic8.

Among philosophers, Kasser (2006) has stated:

Predictably, a Bayesian backlash has also been gaining momentum in
recent years. [Among the objections to Bayesianism are its] surprisingly
subjective approach to probability assignments, as well as the Bayesian
treatment of the problem of old evidence (it appears that we can never
learn anything from evidence that is already in).

Glymour (1980) and Mayo (1997) are particularly strident in their

opposition to Bayesianism as indicated by the literary allusions of these use in

their titles. Glymour’s major anti-Bayesian article is entitled “Why I Am Not A

Bayesian.” This could be a literary allusion to Bertrand Russel’s Why I am not a

Christian. The title of Mayo’s 1997 article “Duhem’s Problem, the Bayesian Way,

and Error Statistics, or “What’s Belief Got To Do With It?” reminds one (at least

this one who like rock music) of Tina Turner’s classic, “What’s Love Got to Do

With It” (Turner, et. al. 1984).

Speaking of human mental cognitive capabilities, Kasser (2006a) stated,

“We do not have the processing power to meet Bayesian standards even in the

fairly simple cases. Coherence requires logical omniscience, namely, that we

know all the logical consequences of our beliefs, and that is unrealistic.” (Kasser,

2006a, lecture 32). However, Kasser went on to point out that this is not a

8 The ‘data analytic’ approach uses a great deal of Exploratory Data Analysis.
However, even books with a large data analytic component (e.g., Moore and
McCabe (1993) still have a significant hypothesis testing component. Authors
generally do not go too far away what the market wants. A possible exception is
Horel and Snee (2001).
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problem unique to Bayesianism, for even non-Bayesian logical coherence is

beyond human mental capabilities.

Other objections described by Kasser (2006a) are that scientists do not

act like Bayesians (reporting priors and posteriors in published research), that

Bayesians have a “somewhat brazen tolerance of subjective probabilities. . .” ,

and, perhaps the two most serious concerns: difficulties having to do with the

nonexistence of a ‘catch all hypothesis,’ and the problem of ‘old evidence’

(Lecture 32).

It may be true that scientists have certainly not acted like Bayesians in the

past, to some degree they have not acted like Frequentists who reject a null

hypothesis: They are interested in establishing their hypothesis (see Howson

and Urbach, 1993). Moreover, scientists from many disciplines are increasingly

using Bayesian methods and collaborating with and/or employing statisticians

who are Bayesians (FDA, 2006; Hoeting, Lecture 1, Colorado State University

2005).

The old evidence problem is explored in Earman’s (1992) Bayes or Bust,

Mayo (1997), and many other works. The problem can be seen in the classic

formulation of Bayes’s Theorem, equation (4). If we know something has

happened, that is, it has actually happened,9 and thus probability of its happing

must be 1. If the probability of any event is 1, its conditional probability on any

other event is also 1. Thus, “because P(E) is 1, P(E/H) is 1 “(Kasser, 2006,

9 We are leaving aside the possibility that we are mistaken in our belief that the
event has happened.
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Lecture 32). This is a mathematical truth. If P(E/H) is 1, simple algebra (1 times

P(H) in the numerator divided by 1 in the denominator) leaves us with the result

that the posterior probability, P(H|E) is equal to the prior probability P(H). Thus

looking at old evidence does not and mathematically can not change result in a

posterior probability different from our prior probability—even if one is a “true”

Bayesian who has a completely subjective probability and is committed to

updating probabilities only using Bayes’s Theorem.

Kasser (2006a) points out that our common sense understanding of

scientific progress counts explaining old evidence positively. He provided the

following example: The fact that Newton’s theory entailed Kepler’s laws of

planetary motion, explained the tides, and provided a unified theory explaining a

number of other phenomena was counted as evidence for the Newton’s theory.

He goes on to describe some of the ways Bayesians have responses to the

problem of old evidence, including the ideas that one should perform the mental

gymnastics of determining a prior excluding this old evidence, i.e., use a counter

factual. Another approach (using the Kepler/Newton example) has been to say

that one is relying not on the old evidence of Kepler’s laws to confirm Newton’s

theory but on the new information (evidence) that Newton’s theory entailed

Kepler’s laws (Kesser, 2006a). The present author proposes a somewhat

kindred, but far simpler solution: As Bayes’s Theorem contains variable to which

humans supply meaning, merely define the variable “e” not as “evidence” (new

or old) but as a “subjective experience of evidence.” Thus one could become

more and more convinced of a proportion each time one thinks about it, whether
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the evidence one is considering during this thinking is new or old. This may be

descriptive of the way people update their beliefs when weighing the pro and con

of everyday arguments over and over again. Moreover this solution to the

problem of old evidence is completely consistent with a truly subjective

understanding of probability. It is possible to object that this could lead to

runaway increases (or decreases) in one’s degree of belief in the truth of a

hypothesis on exceedingly weak evidence just by thinking about the evidence

over and over again. The only response the present author has to this complaint

is to say that it is absolutely true (just as it is true that Bayesians can tolerate

‘bizarre’ probabilities) and that, perhaps, a society may want to reserve the term

‘science’ for those who insist on updating of belief by follow certain (possibly

Popperian) guidelines.

The ‘catch all problem’ is apparent in equation 9 when one realizes that

there are frequently an infinite number of competing hypotheses to the

hypothesis under investigation:

∞
P (e| not h) = Σ P(e | not hi ) (16)

i = 1

This is not a problem for this dissertation because we have a dichotomous case

(the student either meets or does not meet the standard). One might solve the

problem by noting that we are dealing with subjective probabilities and the

individual can constrain these to total less than one.

Part II. Bayesian Statistics and Bayesian Educational Research
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After a discussion of Bayesianism from the point of view of Philosophy of

Science and before reviewing educational literature which employs Bayesian

methodologies, it is worthwhile to step back and describe Bayesian statistics,

particularly as the statistical techniques used this paper might be considered

Frequentist—or at least not exclusively Bayesian. An excellent description is to

be found in the United States Food and Drug Administrations Draft “Guidance for

the Use of Bayesian Statistics in Medical Device Clinical Trials” (FDA, 2006).

This paper is recommended to any readers interested in a good description not

only of Bayesian statistics, but why it is being considered by a government

regulatory agency for use in matters which are, literally, of life and death. The

term description is stressed because Draft Guidance contains not a single

equation, Greek letter, or computation! Several quotes from this document are

provided below. Although some of the comments specifically discuss clinical

trials, the logic of methodological choice is applicable in any field, including10

education.

What is Bayesian statistics?
Bayesian statistics is a statistical theory and approach to data analysis
that provides a coherent method for learning from evidence as it
accumulates. Traditional (frequentist) statistical methods formally use
prior information only in the design of a clinical trial. In the data analysis
stage, prior information is considered only informally, as a complement to,
but not part of the analysis. In contrast, the Bayesian approach uses a
consistent, mathematically formal method called Bayes’s Theorem for

10 It is worth noting again that one of the classical papers on applied
Bayesianism was in a Psychological journal. (Edwards, Lindman, & Savage,
1963)
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combining prior information with current information on a quantity of
interest. (FDA, 2006, Section 3.1)

Why use Bayesian statistics for medical devices?
When good prior information on clinical use of a device exists, the
Bayesian approach may enable FDA to reach the same decision on a
device with a smaller-sized or shorter-duration pivotal trial. . .

Bayesian methods may be controversial when the prior information is
based mainly on personal opinion (often derived by elicitation methods).
The methods are often not controversial when the prior information is
based on empirical evidence such as prior clinical trials. (FDA, 2006,
Section 3.2).

Why are Bayesian methods more commonly used now?
Bayesian analyses are often computationally intense. However, recent
breakthroughs in computational algorithms and many-fold increases in
computing speed have made it possible to carry out calculations for
virtually any Bayesian analysis. These advances have resulted in a
tremendous increase in the use of Bayesian methods over the last
decade. See Malakoff (1999). The basic tool that enabled the advances is
a method called Markov Chain Monte Carlo (MCMC). For a technical
overview of MCMC methods, see Gamerman (1997). (FDA, 2006, Section
3.3)

One final point about Frequentist vs. Bayesian methods is in order. Many

students taking perhaps one or two courses in statistics (much less statistics at a

pre-college level or in a fast paced industrial seminar)—as well as engineers,

scientists, and other researchers—think that statistics methods give us numbers

about the truth of a proposition regarding a substantive subject being studied.

Informed by the discussion of Philosophy of Science above (for example, the

discussion of Popper) and/or a careful reading of the good statistics text books,

one is faced with the inescapable conclusion that the probabilities in Frequentist

hypothesis testing are about the reliability of methods if the truth were know and

those in Bayesian statistics are about beliefs about the truth, and neither is or
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can be about the truth of the subject-matter proposition being studied. It is just

that Bayesians are more honest (some Frequentists might say pompoms) about

this distinction.

Although increasingly used, Bayesian analysis is rather rare in educational

research, with most applications in Item Response Theory (IRT) and Computer

Adaptive Testing (CAT). A published literature review found no applications of

Bayesian approaches in determining if an individual had demonstrated

proficiency on a high stakes educational test. Elmore and Woehlke (1996) found

only three papers employing Bayesian methods in a content analysis of 1,715

papers published from 1978 to 1995 in three educational research Journals

(American Educational Research Journal, Educational Researcher, and Review

of Educational Research), however

Results are consistent with those of other studies in that the most
commonly used methods were ANOVA and ANCOVA, multiple
regression, bivariate correlations, descriptive statistics, multivariate
analysis, nonparametric statistics and t-tests. The major difference in
current methodology is the increased in the use of qualitative methods.
(Abstract).

Haig (1996) recommended that “statistical inference practices in both

educational and psychological research should be directed away from traditional

significance tests in favor of Bayesian inferential methods” (abstract).

One of the papers in the Kotz and Johnson’s (1993) Breakthroughs in

statistics Volume I: Foundations and basic theory was Edwards, Lindman, and

Savage (1993). In addition, Pollard (1989) continued the theme of how

research might be done with a Bayesian statistics. However, Nunnally and
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Bernstein (1994) devoted perhaps no more than four of its 700 pages to

Bayesian-related topics. These include a brief explanation of Bayes’s Theorem

and references to computer adapted testing and IRT estimation procedures.

In addition to a brief overview of the Bayesian updating, Hambleton,

Swaminathan, and Rogers (1991, pp. 38-9) listed various IRT computer

programs with Bayesian estimation techniques, ASCAL, BILOG, MULTILOG (pp

49-50), and indicate “Swaminathan and Gifford (1982, 1985, 1986) have

developed Bayesian procedures for one-, two-, and three-parameter models in

which the prior distributions are placed on item and ability parameters” (p. 43).

However, the emphasis here seems to be on parameter estimation, with the

ultimate interest in the items, not on use with consequences, for they stated,

“This procedure eliminates the problems encountered in the joint maximum

likelihood procedure, namely that of improper estimates for certain response

patterns” (Hambleton, Swaminathan, and Rogers, 1991, p. 43).

Bock and Mislevy (1982) explored Bayesian approaches to adaptive

Estimation of Ability in a Microcomputer Environment. Huynh (1998) suggested a

Bayesian approach for partial credit scoring.

Two major 2006 publications, research handbooks sponsored or

published by major educational associations, provide some up to date

summaries of the use of Bayesian (or more precisely, Empirical Bayes11, EB)

11 Difference between Bayesian and empirical Bayes is that “In a fully Bayesian solution, he
distributional form of the prior, as well as the hyperperameters, are specified a priori. . .By
contrast, in EB [Empirical Bayes], only the distributional form is specified beforehand. The
hyperparameters are not specified. Rather they are estimated simultaneously. . .” (Braun, p. 248). 
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approaches. Chapter 14 (of 46 Chapters) in the Handbook of Complementary

Methods in Educational Research edited by Green, Cammilli, and Elmore is

Henry Braun’s “Empirical Bayes.” Braun states in his conclusion:

Indeed, Bayesian methods generally are in the ascendancy—it
appears that there is a greater willingness to accept the notion of
introducing subjective beliefs into an analysis through the mechanism of a
prior distribution. This is due, in large measure, to the increase in
accessible computing power and powerful software that make Bayesian
modeling feasible—along with many successful examples of Bayesian
date analysis ([Gelman, Carlin, Stern & Rubin, 2003]) ( Braun p. 256). 
 

While most of Braun’s chapter is devoted to exposition of EB, he also

described a number of applications in educational research. He describes

several examples of hierarchical modeling, for example, developing equations

“. . . to predict whether a student will achieve a fixed standard on an examination

or whether he or she will graduate from high school by a certain age.” (Braun, p

252). In a hierarchical model, “we want to estimate a set of such prediction

equations, one for each school” (Braun, p 252). Braun cited Wong and Mason

(1985), Raudenbush and Bryk (2002) in this vein. He also indicates that Zwick &

Braun (1993) produced studies on “a closely related, but technically more

challenging problem . . . estimating the probability distribution governing the time

to the occurrence of some event” (Braun, 2006).

Braun (2006) discussed the use of EB in metaanalysis, particularly in

studies of Validity Generalization, citing among other Hedges (1988) and Braun

(1989). He also discussed value-added models judging teacher effectiveness,

which “have been used in Tennessee since 1993 and have been adopted by a

number of districts in other states (Braun, 2006).” These mixed models
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separately estimate the district effect (a fixed effect) and the teacher effect (a

random effect), and a set of equations over multiple years is called a layered

model. Among the sources Braun (2006) suggests are Sanders, Saxton, & Horn

(1997, Ballou, Sanders, and Wright (2004), Harville (1976), Kupermintz (2003),

McCaffey, Lockwood, Koretz, Louis, and Hamilton (2004), and Braun (2005).

Several pages of Brennan’s 700-plus page Educational Measurement,

Fourth Edition, 2006),12 have headings focusing on Bayesian methods. In

Chapter 5, “Scaling and Norming,” Kolen states ”IRT proficiency can also be

estimated using Bayesian methods. . .” and he describes the Bayesian expected

a posteriori (EAP). He also points out that “Unlike maximum likelihood

estimates, Bayesian EAP estimates exist for all response patterns. . . “ (Kolen,

2006). On the other hand he cautioned:

Similar to the Kelley regressed scores, the EAP is a biased estimate.
Examinees whose θ is above the mean in the population, on average,
have estimates that lower their θ . Examinees whose θ is below the
mean in the population, on average, have estimates that are greater than
their θ . A consequence of this bias is that in a given population the
variability of the EAO estimates of proficiency typically is less than the
variability of θ because of shrinkage toward the mean for the EAO
estimates. In addition, as with the Kelley regressed scores, the EAO
estimates depend on the distribution in the population. (Kolen, 2006)

In the Chapter 4 of Brennan (2006) “Item Response Theory” (Yen and

Fitzpatrick, 2006) the authors stated: 

It is possible to estimate abilities using statistical procedures other than
MLE. The most commonly used alternatives involve Bayesian methods,
in which a prior distribution is assumed for the parameter being estimated.

12 A volume jointly sponsored by the National Council on Measurement in Education and the
American Council on Education



70

The more confident the user is about the prior information, the smaller is
the standard deviation of the prior distribution. The prior information
comes from knowledge about examinees that is external to the test, such
as concurrent performance on another test (in which case the estimate is
an empirical Bayes estimate) or the user’s belief or knowledge about how
a similar population of examinees performed on the test previously. (Yen
and Fitzpatrick, 2006, p138)

Yen and Fitzpatrick (2006) also stated “Empirical Bayes estimators have

been successfully used in combination with IRT models to provide more accurate

subscores on achievement tests (p.138). Among the works they recommend are

Wainer et al., (2001) Yen, (1987), and Yen, Sykes, Ito, & Julian (1997). Yen and

Fitzpatrick (2006) discussed Markov Chain Monte Carlo (MCMC) methods, which

“are usually carried out using Bayesian models,” for estimation in more complex

unidimensional and multidimensional IRT models. Citing a number of studies,

starting with Albert (1992), they conclude “Results to date for MCMC methods

are promising, but very preliminary. Although easily implemented using software

packages or programming languages. . . MCMC methodology is conceptually

complex, and the time required for parameter estimation is very lengthy.”

Based on the above, it is clear that Bayesian concepts, methodologies

(e.g., EB), and tools (e.g., MCMC) are increasingly used in educational research,

particularly in conjunction with Item Response Theory. However, the literature

review found no paper which had the focus of the present work, use of a basic

simulation and a simple form of Bayes’s Theorem (see equation 9) to determine

if students can be classified more accurately (when Classical Measurement

Theory’s True Score is the standard) by employing a Bayesian approach than

would be possible using Observed Scores alone.



71

Part III. Classical Test Theory

As this paper relies heavily on Classical Test Theory, it is appropriate to

describe its essential points. Classical Test Theory considers problem in

educational testing, specifically how to formally address the common sense

notion that the score a person receives on a given day with a given

administration of a given form of a given test is not the only possible score they

could have received on that test—must less that this score is the only possible

indicator of how they should be classified according to the social construct the

test purports to measure. High stakes tests attempt to measure where a student

does or does not meet an educational standard. A simple parable illustrates the

difficulty in relying on such tests.

Imagine a state has a requirement to pass a social studies test with a

score of 20 or more out of a total of 40 possible points (one point per multiple

choice questions). Imagine further that there are four students, each of whom

“just meets” the state educational standard at 7:00 a.m. on the day of a social

science high school graduation test be to administered at 8:00 a.m.. The first

student’s mother had decided in advance—and told him—she would drive him to

school that day. His i-pod is broken and his mother is turned to NPR which has

a story about the Supreme Court and the difficulties a bill is having in Congress.

Two questions of 40 that appear on the test have to do with the functioning of the

Supreme Court and congress and the student gets them correct only because of
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the information they picked up from the radio program13. The second student

has been told by her parents consistently throughout the semester that they

believe she will do well, to relax, and remember if she just happens not to pass

there will be other opportunities to take the test which she will be sure to pass.

The third student, who is from time to time beaten by his alcoholic father, has

been told by the father as he leaves home to take the test that if fails the father

will break his neck—and the student believes the father is being literal. The

fourth student broke up with her boyfriend Friday because she found that he was

sleeping with her best friend. She felt sick Saturday. On Sunday night she took

a home early pregnancy test and it was positive. She had only a few hours

sleep all weekend. Our common sense intuition that although cognitively at 7:00

a.m. all four students were “just proficient” in social studies as defined by the

state, it is unlikely that all of four students would obtain the same score of 20 on

the test, the score of a person who is ‘just proficient14’. The ‘unobserved object’

of a True Score in Classical Measurement Theory gives theoretical content and

the potential for quantification to this intuition.

13 This story is based on the present author’s experience of realizing he had not
taken a course in Political Philosophy and reading summary chapters of two
paperback anthology of political philosophy books the night before the Political
Science GRE, on which there were two questions he believes he got correct
because of this cramming.

14 The present author has was appointed to and participated in an advisory
committee which recommended cut scores for an administration of the Michigan
MEAP High School Mathematics Test. A modified Angoff process was used by
the consultants that facilitated the group.
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Nunnally and Bernstein (1994) discussed Classical Measurement Theory

at length. They point out that the basic concept is:

O = T + E (17) 

where O is the observed Score, T is the True score, and E is an error

component. The true score is the score the examinee would obtain if there were

no extraordinary factors. Such factors could include cramming, text anxiety,

personal concerns (positive or negative, for example, winning the lottery),

language difficulty, etc. In a Frequentist sense, T is the average score the

examinee (at a given level of development and study) would get in the “long run”

by taking the test over and over (but with one test score not influencing another).

Nunnally and Bernstein (1994) indicate that the true score, in deviation

units, can be estimated from the observed score and data on the test, “True

deviation scores (t’) are thus estimated as the product of the reliability coefficient

and the obtained deviation score [x]

t’ = rxxx (Nunnally and Bernstein, 7-3, p. 259) (18) 

Nunnally and Bernstein (1994) went on to point out that a confidence

interval can be built around the True score

t’ +/- 2 σmeas (Nunnally and Bernstein,, p. 240, 260) (19) 

where σmeas= σx √(1- rxx) (Nunnally and Bernstein, 6-34, p. 239) (20)

A data set for one administration of the Mathematics portion of the High School

Proficiency Test (Appendix A) was obtained along with information on its

psychometric properties of that administration, the reliability (rxx) and the sample

standard deviation of scores sx which is an estimate of σx .
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Before discussing the methodology of this study, it is worthwhile to reflect

on the fact that one of the calculations involves determining the probability that a

student who actually meets (or does not meet) the standard will be correctly

classified. One report of note has addressed a similar problem, the analysis of

the accuracy of standard tests, Rogosa (1999) which was was federally funded

research at Stanford’s. Viadero (1999) in her Education Week report on the

study stated:

“How often will a student who really belongs at the 50th percentile
according to national test norms actually score within 5 percentile points
of that ranking on a test?

The answer, a Stanford University statistician says in a new report,
is only about 30 percent of the time in mathematics and 42 percent in
reading (p. 3).
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CHAPTER 3

METHODOLOGY

This Chapter has four sections. The first discusses the classical (non-

Bayesian) statistical methodologies used in the study. Next a short thought

experiment is presented to motivate an understanding of the study. Then a

simplified version of the study and corresponding flowchart (Figure 11) is

presented. The final section contains a more detailed description of the steps of

the study (also see Appendices B through D).

Statistical Methodologies Used

In addition to the discrete form of Bayes’s Theorem as presented in

Equation 9 and Classical Test Theory, the empirical portion of this study relies on

three statistical methodologies: (a) Monte Carlo Simulation which will be used to

generate the data (Figure 11), (b) Statistical Design of Experiments (DoE),

specifically Response Surface Methodology (RSM), to plan the simulations and

analyze the results, and (c) Logistic Regression to do some of the intermediate

calculations for a term in Bayes’s Theorem.

Monte Carlo Simulation

Monte Carlo Simulation is a statistical technique to simulate stochastic

phenomena. Using a computer, datapoints are drawn at random from a

theoretical (such as the normal) or empirical statistical distribution. However,

physical simulation predates computer simulation. Stigler (1999), in an article

entitled “Stochastic Simulation in the Nineteenth Century,” recalled a number of
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physical simulations:

There has been a tendency in recent years to date the use of simulation in
statistics only from the early years of the twentieth century. For example,
Teichroew (1965) and Irwin (1978) suggest that its earliest appearance
may be in “Student’s” classical investigation of the t-statistic (Gosset,
1908a), where “Student” (William S. Gosset) generated 750 samples of
size 4. He accomplished this by shuffling 3,000 cards labeled with
anthropometric measurements on 3,000 criminals, and he groups. Gosset
also used the same generated samples in his investigation of the
correlation coefficient (Gosset, 1908b) . . . Even more sophisticated uses
of the techniques can be found in earlier literature, however, and I shall
present three such examples from the last quarter of the nineteenth
century. . .
All concern simulation in the modern sense of the word, a modern
stochastic art for the study of statistical science. All three involve
generation of half-normal variates and the separate assignment of
randomly generated signs to the variates, but the three involve three
different randomizing devices. De Forest drew labeled cards from a box,
[George H.] Darwin [son of Charles Darwin and a cousin of Francis Galton]
used a spinner, and [Sir Francis] Galton used a special set of dice. . .

Figure 4: “Photographs of the three types of Galton’s dice. . . from about 1800,
perhaps the oldest surviving device for simulating normally distributed random
numbers. They are presently in the Galton Collection at University College
London (Stigler, 1999, Figure 7.1, p. 144, reproduced by permission of Dr.
Stigler).”

Van Matre and Slovensky (2000), in an article aimed at educators involved

in teaching Statistical Quality Control, stated the following:
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A pedagogic history of quality management would reveal a rich tradition of
using innovative games, exercises, and experiments to convey effectively
key quality principles to participants. Such demonstrations go back at
least to 1931 and Walter Shewhart’s bowl. Shewhart used the data of
4000 drawings (with replacement) from a bowl of 998 numbered chips to
demonstrate the principles underlying his control chart. [W. Edwards]
Deming. . . is famous red beads taught “by experiment a number of
important principles” (1993, 158); for example, the failure of bonuses to
change worker productivity in a common cause system. His funnel
experiment demonstrated the detrimental effects of tampering; that is,
treating common cause variation as if it were due to an assignable cause.

Moving into the computer age, Stanislaus Ulam’s (1991) story of the

development of Monte Carlo simulation—which had a role in solving

mathematical problems connected with the development of atomic weapons for

which there was no closed form solution—is quoted at length because of its

importance in the development of a key methodology used in this paper:

Two seminar talks I gave shortly after my return [to Los Alamos during
the Manhattan Project] turned out to have good or lucky ideas and lead to
successful further developments.

The second talk was on probabilistic calculations for a class of physical
problems. The idea for what was later called the Monte Carlo method
occurred to me when I was playing solitaire during my illness. I noticed
that it may be much more practical to get an idea of the probability of the
successful outcome of a solitaire game (like Canfield or some other where
the skill of the player is not important) by laying down the cards, or
experimenting with the process and merely noticing what proportion that
comes out successfully, rather than to try to compute all the combinatorial
possibilities which are an exponentially increasing number so great that,
except in very elementary cases, there is no way to estimate it. This is
intellectually surprising, and if not exactly humiliating, it gives one a feeling
of modesty about the limits of rational or traditional thinking. In a
sufficiently complicated problem, actual sampling is better than the
examination of all the chains of possibilities.

It occurred to me that this could be equally true of all processes
involving branching of events, as the production and further multiplication
of neutrons in some kind of material containing uranium or other fissile
elements. . . The elementary probabilities of each of these possibilities are
individually known, to some extent, from the knowledge of the coresss
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sections. But the problem is to know what a succession and branching of
perhaps hundreds of thousands or millions will do. One can write
differential equations or integral differential equations for the “expected
values,” but to solve them or even to get an approximate idea of the
properties of the solution, is an entirely different matter.

The idea was to try out thousands of such possibilities and, at each
stage, to select by chance, by means of a “random number, with suitable
probability, the fate or kind of event, to follow it in a line, so to speak,
instead of considering all the branches. After examining the possible
histories of only a few thousand, one will have a good sample and an
approximate answer to the problem. All one needed was to have a
means of producing such sample histories. It so happened that
computing machines were coming into existence and here was something
suitable for machine calculations. . .

[John] Von Neumann played a leading role in the launching of
electronic computers. . . .
The Monte Carlo method came into concrete form with its attendant
rudiments of a theory after I proposed the possibilities of such probabilistic
schemes to Johnny in 1946. . .After this conversation we developed
together the mathematics of the method. It seems to me that the name
Monte Carlo contributed very much to the popularization of this procedure.
It was named Monte Carlo because of the element of chance, the
production of random numbers with which to play the suitable games.
(Ulam, 1991, pp196ff)

In 1964 Hertz, then a Director at McKinsey & Company (a major business

consulting firm) sought to popularize the use of Monte Carlo simulation in

business with a Harvard Business Review article, “Risk Analysis in Capital

Investment.” A companion article was published in the same executive-oriented

journal in 1968, “Investment Policies that Pay Off.” In one of these articles

(1964) Hertz used an illustration of the possible outcomes of dice to illustrate a

distribution (one way to get a “two,” two ways to get a “three,” six ways to get a

“seven,”, etc.). In the other, Hertz (1968) provided a conceptual illustration in

which he used ‘spinners’ to represent how a computer might select values of

possible distributions of variables that go into the calculation of Return on
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Investment (market size and share, marketing and selling costs, fixed and

variable manufacturing costs, and investment). Looking back on the article

from the perspective of desktop computers, one can see how far the technology

has advanced the calculation possibilities since the days of mainframes and

punchcards, “A computer can be used to carry out the trials of the simulation

method in very little time and at very little expense. Thus for one trial, 3,600

discounted cash flow calculations, each based on a selection of the nine input

factors, were run in two minutes at a cost of $15 for computer time.”

Since these articles, PC software packages, such as @Risk (Palisade

Corporation, 2002), are available as Excel spreadsheet add-in for a wide variety

of business and technical problems. The present author was able, once

provided with engineering equations, to use the @Risk program to estimate the

distribution of distance required to stop a truck given inputs such as tire

characteristic, brake pad friction, and driver reaction time.

Moving to the realm of educational research, Sawilowsky (1990) indicated

Monte Carlo Simulation is an appropriate, and some times the only, method to

evaluate statistical methodologies. It is frequently faster than developing closed

form solutions, if such solutions exist. If they do not exist, it may be the only

means available. Micceri (1989) has pointed out that few distributions of data in

education follow a normal distribution. Thus one should consider working with

empirical, rather than smooth theoretical, distributions. When an empirical

distribution is used an index number is assigned to each datapoint in the

distribution. Using a random number generator there are drawings (usually with
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replacement) from a uniform distribution so that each of the index numbers an

(approximately) equal chance to be selected. This corresponds to a datapoint is

then available for further manipulation. This process is repeated, generally

thousands of times, to obtain stable results. If a theoretical distribution is used,

for example, the normal, random numbers are chosen from a uniform, and

converted to normal deviates so that a the chances of a number within a range

being selected are proportional to the probability of the normal within that range.

In this paper Minitab® Statistical Software (Minitab, 2000) is used to

perform the Monte Carlo simulations.

Statistical Design of Experiments

Design of Experiments (DoE) was discussed from a philosophical point of

view in the Chapter 2. This section briefly describes Statistical Design of

Experiments (DoE) as a methodology which takes advantage of

geometrical/mathematical properties of vector spaces (for example, orthogonally)

to develop combinations of factors which can (a) produce a great deal of

information in a small number of experiments, particularly compared to one-

factor-at-a-time (sometimes called OFAT) experimentation, and (b) frequently

provide information which could not be developed if one-factor-at-a-time

experimentation is used, i.e., estimates of interactions. Standard works

describing Design of Experiments include Montgomery (1997), Box, Hunter, and
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Hunter (1978), Khuri and Cornell (1987), and Box and Draper (1987)15.

Plans for DoE can be represented graphically with a dot

representing one or more runs of an experimental combination. For example, an

experiment with three factors, x1, x2, and x3, each with two possible levels (high

and low) can be represented as in Figure 5. 

Figure 5: A three factor two level full factorial DoE. “Part A” is at the ‘low’
values of x1, x2, and x3. “Part B” is at the ‘low’ value of x3 and the ‘high’ values of
x1, and x2.

As there is one experimental run for each of the possible combinations of

factors, this is called “an eight run 2 level full factorial design,” with 2 x 2 x 2 = 23

= 8 experimental runs. If the phenomenon of interest is the physical

performance of parts (called y16), eight parts would be made, each with a

different combination of characteristics being studied. The experiment would

15 These authors recommend an iterative approach, frequently starting with a
screening experiment (simple fractional factorial with center points) to obtain a
basic idea of the Response Surface, moving toward a region of interest, and
exploring the that of interest with a Response Surface Design, such as a Central
Composite Design.

16 It is possible for y to be a vector. If so, DoE can be used to make trade offs
between outputs.

A

x3

x1

x2

B
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be run, the corresponding levels of y recorded, and a graphical and statistical

analysis (for example, ANOVA) performed. In this ‘full factorial’ case, equations

for y can be developed with linear, quadratic, and interaction terms estimated

free and clear of one another.

It is possible, using “generators,” to develop “fractional factorial designs”

(Box, Hunter, and Hunter, 1978). For example, using a “half fraction” one might

study four variables in 8 experimental runs. Thus, rather than with

2x 2 x 2 x 2 = 24 = 16 experimental runs, one has 2 x 2 x 2 = 24-1 = 8

experimental runs. For this efficiency one gives up the ability to estimate “higher

order interactions” without “confounding.” Fortunately for experimenters, such

“higher level terms” are frequently not statistically significant (Box, Hunter, and

Hunter, 1978).

Another design might be composed of “center” and “axial” points

(experimental runs), as shown in Figure 6. The axial points are sometimes

called “star points.”

Figure 6. Center and axial (star) design DoE.
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A factorial design (or fractional factorial design) and the design with center

and axial points can be combined to develop what is termed a Central

Composite Design, one of a class of designs termed “Response Surface

Design.” This is illustrated in Figure 7. Frequently multiple runs are made at the

“center point” to provide an error term to be used in ANOVA (Box and Draper,

1987). These designs have good statistical properties such as rotatability (Box

and Draper, 1987).

Figure 7: Central composite design (CCD) DoE.
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The following graphic, Figure 8 is a slightly different representation of the

Central Composite Design.

CCD Illustration Courtesy ofCCD Illustration Courtesy of

Figure 8: CCD alternate representation. Graphic by permission of Stat-Ease.

An advantage of the Central Composite Design is that it can be used to model

an empirical response surface with squared and interaction terms, for example:

y = β0 + β1 x1 + β2 x2 + β3 x3

+ β11 x1
2 + β22 x2

2 + β33 x3
2

+ β12 x1x2 + β13 x1x3 + β23 x2x3 + ε (21)

It is useful to visualize two of the three (predictor variable) dimensions this

Response Surface as illustrated in Figure 9.
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Figure 9: Response surface of y in x1 and x2. Compare with Figure 10.

It is more useful, however, to graph the Response Surface of y as a two

dimensional contour plot as in Figure 10 which can be read much like a

temperature map produced in a daily newspaper.

Figure 10: Contour plot of y in x1 and x2. Compare with Figure 9.

In this paper Design Expert software (Heleseth, et. al., 2000) is used to

‘build’ the Central Composite Design and generate the response surfaces which

are the focus of the study.
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Logistic Regression

Evert (2002) defines Logistic regression as follows:

A form of regression used when the response variable is a binary variable.
The method is based on the logistic transformation or logit of a
proportion[17], namely

Logit (p) = ln (p/1-p)

As p tends to 0, logit (p) tends to -∞ and as p tends to 1, logit (p) tends

to ∞ . The function logit (p) is a sigmoid curve[18] . . . . Applying this
transformation, this form of regression is written as:

ln (p/1-p) = β0 + β1 x1 + . . . + βq xq

where p = Pr (dependent variable = 1) and x1, x2, . . . xq are the explanatory
variables. Using the logistic transformation in this way overcomes the
problems that might arise if p was modeled directly as a linear function of
the explanatory variables, in particular, it avoids fitted probabilities outside
the range (0,1). ( pp. 225-226)

In this paper, a single explanatory variable is used, thus the “data

probability” used in Bayes’s Theorem can be calculated using the following

formula and the estimates for α (a) and β (b) to obtain probability of a student

who has a certain observed score (x) is indeed proficient.

P(x) = 1 (22)

1+e
-(α + βX )

17 Present writer’s note: The proportion in question is the odds ratio, or the odds
in favor, or the probability of success divided by the probability of failure.

18 Present authors note: a sigmoid curve has an elongated s shape.
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This Study

Thought Experiment

In this section a simple thought experiment is described which will provide

a basic overview of the procedure used:

• Governmental body sets educational standard for high school graduation.

• A standardized test is developed and cut score for proficiency (meeting

the standard) is determined.

• 1,038,044 students who are covered by the standard take the test.

• Before the test is administered a prior probability of meeting the standard

is assigned to each student.

• After the test is administered and scored, a Student is classified as

proficient using the Observed Score procedure if their Observed Score is

greater than or equal to the Cut Score.

• After the test is administered and scored, information from the student’s

Observed Score is combined with that student’s prior probability via

Bayes’s Theorem to produce a posterior probability. A Student is

classified as proficient using the Bayesian procedure if the posterior is

greater than or equal to 0.5.

• The state hires an “Omniscient Classifier,” who can determine the exact

True Scores of each of the students without error (the obvious
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impossibility of this is why this is a thought experiment19).

• The “Omniscient Classifier” Calculates 3 numbers:

1. The proportion of students who were classified correctly (with their

individual True Score as the criterion) by the Bayesian Procedure but

incorrectly classified by the Observed Procedure.

2. The proportion of students who were classified correctly (again, with

their True Score as the criterion) by the Observed procedure but

incorrectly classified by the Bayesian Procedure.

3. The Net Bayesian Advantage (NBA), which is #1 minus #2.

• NBA can be positive (Bayesian is better) or Negative (Observed is

better)

• Cases where both procedures classified correctly or both

procedures classified the student incorrectly can be ignored.

With NBA, the government can, after appropriate statistical analysis,

decide whether there is evidence that the Bayesian or Observed procedure

produces better results. Additional studies could be conducted with other

students to determine if the results of the study on the superiority or inferiority of

a Bayesian approach are generalizabile.

19 Sometimes some people act as though the test were an “Omniscient



89

Outline of the Study (Simplified Process)

Having provided a “thought experiment” of an ideal way to judge a

Bayesian approach versus the use of Observed Scores alone, this section

provides a simplified version of the present study. The goal of the thought

experiment was to calculate a simple metric to judge a Bayesian approach—

NBA. In the “thought experiment” the calculation of NBA required collection of

three pieces of information corresponding20 to each of 1,038,044 students:

• Whether the student’s True Score was above or below the Cut Score

• Whether the student’s Observed Score was above or below the Cut

Score

• Whether the student’s posterior probability was above or below 0.5.

In other words, each student was a datapoint for which there were three pieces

of information.

Without an “Omniscient Classifier” like that in the thought experiment, it is

impossible to directly evaluate whether a specific Bayesian procedure will

classify students more accurately than relying on Observed Scores alone (that is,

have a positive NBA). However, because simulation permits the researcher to

posit the existence of a set of True Scores, it is possible to evaluate the

circumstances under which a Bayesian procedure would be superior. This

section outlines that simulation by reference to Figure 11. In this there are two

important items for the reader to keep in mind:

Classifier”
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• The steps in Figure 11 between the rounded boxes at the top and

bottom represent calculations performed on ONE True Score. They

are repeated 1,038,044 times in the simulation for each of the 30

combinations of Bias, SDBias, Cut Score, and Reliability in the Central

Composite Design (a total of 31,141,320 simulated testers).

• The details of this outline are covered in the next section, The Study.

In that section the reader will find much fuller descriptions of L,

description of the logistic regression, SEM (standard error of

Measurement), “True Probability,” the method the simulate deviations,

source of the distribution of Estimated True Scores, etc.

As frequently is the case with processes with multiple parallel steps, it is

easiest to start with the output. Thus we will start at the bottom (above the

rounded box) and work up to the other rounded box. The final last output is

found in the unshaded hexagon near the bottom right hand side of the flowchart.

Note there are two other unshaded hexagons. These correspond to the

classifications in the thought experiment:

• Posterior >= 0.5,

• Observed Score >= Cut Score, and

• True Score >= Cut Score.

The posterior is calculated by Bayes’s Theorem in the pink box. This is the

Likelihood form of Bayes’s Theorem, Equation 9 [with L = P (e | not h) / P (e | h)]. 
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In addition to L, the posterior has one other input, the prior.

The steps to calculate the prior are shaded yellow. It is the sum of the

“True Probability” plus a deviation from that probability. The deviation is, in turn,

the result of a Monte Carlo simulation. This simulation produces deviations

which are normally distributed with a mean equal to the “Bias” and a standard

deviation equal to the “SDBias.” Bias and SDBias are selected according to a

Central Composite Design (see Figures 20 and 21). The “True Probability” is a

simple calculation of the probability of tester with a given True Score obtaining

an Observed Score equal to or above the Cut Score given an SEM, which is turn

is a function of the Reliability of the Test (see all green boxes, white SEM box,

and blue “One Reliability” box).

Returning to Bayes’s Theorem (Equation 9) in the pink box, one other

piece of data is needed to calculate the posterior, L. L is the ratio of a) the

probability that a student is NOT being proficient given their Observed Score on

a test to ii) the probability that they are proficient given their Observed Score.21

This is a result of applying using one of several logistic equations (the factors in

the run of the CCD determine which equation) and the Observed Score (see blue

box with rounded corners on the right). The Observed Score is also simulated.

This is done by a deviation to the Estimated True Score that is under

examination (central green box). The deviation is based in turn on a simulation

with mean zero and the SEM (Standard Error of Measurement).

21 As discussed in other sections of this dissertation, L relates to Popper’s bold
conjectures.
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There are 1 million-plus iterations (trips through this flowchart) for each

run of the Central Composite Design. Once the iterations of a run are

completed, the classifications (True, Observed, and Posterior indicating

proficient or not proficient) are summarized and the Net Bayesian Advantage is

calculated (see large lower curved box). This is repeated for each of the 30 runs

of the Central Composite Design, producing 30 observations of Net Bayesian

Advantage which are modeled using Response Surface Methodology.
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Figure 11: Flowchart of a simplified version of steps in this study, with emphasis
on the steps in the simulation. A more detailed flowchart is in Appendix D.
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The Study

Having provided a “bottom up” overview of the study in the prior section,

this section provides the “top down” detail. It is flowcharted in Appendix D.

Preliminary Step

This study makes extensive use of simulations based on Estimated True

Scores (ETS). This section describes the development of those Estimated True

Scores from the results of the High School Mathematics portion of the Michigan

Educational Assessment Program for Grade 11 First Time Testers Spring 1999

(hereafter referred to as 99HS-MEAP-M). This dataset contained 74,146 scores

(Appendix A). To obtain ETS, the following procedure was used:

Step a. Subtract the mean of the scores (28.887) from each score to

obtain the deviation score, x.

Step b. Obtain an estimate of the true deviation score by multiplying the

deviation score by the reliability using equation 18:

t’ = rxx x (18)

where rxx is the reliability of the test, which was 89.2 for the 99HS-MEAP-M.

Step c. Add back the mean (28.887) to obtain the 74,146 ETS.

Step d. “Stack” the 74,146 ETS fourteen times to obtain 1,038,044 ETS

which will be used throughout the rest of the study. (In the simulation, random

disturbances are added to the 1,038,044 ETS).
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Likelihood Form of Bayes’s Theorem

In this study, the simple, likelihood form of Bayes’s Theorem, equation 9,

is use. It is presented in equation 23 in an alternative notation:

[ Prior / (1-Prior) ] / { [ Prior / (1-Prior) ] + L} (23)

This equation has two inputs, the Prior and L. The Prior is the Bayesian

Prior probability that the student meets the standard. It is the object of this

paper to develop specification for two characteristics of this Prior, Bias and

Consistency, which can be used by researchers as guidance in developing and

evaluating specific procedures for generating these priors if, as suggested in

Chapter 5, a decision is made to evaluate the costs and benefits of using a

simple Bayesian approach to classify students. In this case, L is the information

contained in the Observed score. It is defined as:

L = P (T = not M | O) / P (T = M | O) (24)

Where T = True Score
M = Meets the Standard
O = Observed Score.

In other words, L is an estimate of the ratio of the conditional probability

(conditioned on the Observed Score) that the test taker does not meet the

standard divided by the conditional probability (again, conditioned on the

Observed Score) that the test take does meet the standard. As this is a binary

case where either the student meets the standard or does not (that is, the True

Score is either is at or above the Cut Score or it is not), L is to be estimated by

calculating P (T = M | O). A reasonable method of doing this is as is described in

section below. A reasonable method for generating priors for use in this study
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(which focuses on their Bias and Consistency) is described in the second

following section.

It is worth stressing at this point in the paper that although the process for

generating the probabilities that are entered into Bayes’s Theorem (equation 9)

are considered reasonable, the reasonableness of these inputs is not required.

What is important for a study which looks at characteristics of a Bayesian Prior is

that the process for producing the Priors and the Data Probabilities is well

defined (as it is in this study by a computer program, Appendix B) and that there

is a classification of the students as meeting or not meeting standards that

results from the probabilities (see Figure 15). It is these classification that

determine the calculation of Net Bayesian Advantage (Equation 30), which is the

measure of the improvement in classification as proficient or not proficient (with

True Score as the criterion) from a Bayesian approach compared with relying on

Observed Scores alone.

Figures 12 through 14 provide a graphical comparison of Observed

Scores from the 99HS-MEAP-M with ETS.
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Figure 12: Boxplot of 99HS-MEAP-M and ETS (Estimated True Scores) used in
the simulation. Note the attenuation of ETS relative to 99HS-MEAP-M.
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Figure 13: Histogram of 99HS-MEAP-M showing digit preference.
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Figure 14: Histogram of ETS showing digit preference.

Generating L

Step a. Take 1,038,044 ETS the development of which is described in

above.

Step b. Generate an ‘error’ term for each ETS as follows:

Step b.i. Determine the Reliability of the test of interest.

Step b.ii. For that reliability, calculate a Standard Error of

Measurement (SEM) using equation 20 (repeated below for

convenience): 

σ meas = σ x √ (1-rxx) (20)

where σ meas = SEM
σ x = standard deviation of the original data (74,146 actual
observed scores in the HS-MEAP-M, and
rxx = the Reliability of the test of interest.
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Step b. iii. Generate 1,038,044 random ‘errors’ from a normal

distribution with mean 0 and standard deviation equal to the

Standard Error of Measurement (SEM) of interest.

Step b. iv. Add the random ‘errors’ to the ETS.

Step b. v. Truncate the new simulated observed scores at 0 and 49

(the range of scores on the 99HS-MEAP-M).

Step b. vi. A. 1. Code the ETS as follows:

1 if ETS >= Cut Score of Interest
0 if ETS < Cut Score.

Step b. vii: Using the Minitab Logistic Regression subroutine

(Appendix C), develop equations for the Logit with the Coded ETS as the

dependent variable and the simulated Observed Score (O) as the

independent variable. The coefficients for these equations will be used in

the Main Simulations to calculate P (T = M | O), and thus L = P (T = not M

| O) / P (T = M | O) for each O (Observed Score in the Main Simulations)

using equation 22 (repeated below for convenience): 

 P(x) = 1 (22) 

 1+e
-(α + βX )

Generating Priors

The process used for generating prior is a follows:

Step a. Take 1,038,044 ETS the development of which is described

above.

Step b. For each ETS, calculate the probability of obtaining an Observed
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Score greater than or equal to the Cut Score given the Observed Scores and

assuming the Observed Scores are normally distributed with mean equal to the

ETS and standard deviation equal to the SEM (the rational for step is discussed

in the next section):

P (O >= C | µ = ETS , σ = SEM) (25)

This is mathematically equivalent to calculating the following:

P (O < ETS | µ = Cut , σ = SEM) (26)

That is, for each EST, calculate the probability cumulative probability to

the ETS of a normal distribution with mean equal to the Cut Score and standard

deviation equal to the SEM. This identity is used because equation 26 can be

easily calculated for the vector of 1,038,044 observations of ETS within Minitab.

Step c. Generate, ‘error’ terms from a normal distribution with mean equal

to the Bias and standard deviation equal to the SDBias (a measure of (lack of )

Consistency).

Step d. Add the results of Steps b and c.

Step e. Windsorize the result of Step d at 0.5 and 99.5. This insures that

all students will have be estimated to have some (be it only 0.5% ) chance of

meeting the standard and not student will be estimated as having 100% chance

of meeting the standard.
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A Note on the Reasonableness of Priors

The focus of this study is to develop specifications for characteristics of a

Bayesian estimate of the probability that a student meet the standards of a high

stakes test that, when combined with information from the Observed Scores

using Bayes’s Theorem (equation 9) will improve classification compared with

the present procedure using Observed Scores alone. Two reasonable choices

of characteristics of these Priors are the following:

• Accuracy, which is measured by its absence, Bias (average

distance from “true” probability), and

• Consistency, which is also measured by the its absence, the

standard deviation of the Bias, called SDBias in this study.

To discuss the meaning of these characteristics, it is helpful to first

consider an “ideal” procedure, which would produce Unbiased and Consistent

Priors, that is produce, on average, the correct Prior estimate for all potential test

takers who have the same set of characteristics (thus Accurate or Unbiased) and

have a small spread around this average (thus Consistent). For example,

estimates of Priors based on a procedure involving a transformation of an

expected observed score which, in turn, could be predicted by a regression

equation would produce the same predicted Prior for each and every student

who had the same value of the dependent variables in the equation. Moreover,

if the confidence interval of the regression is small, the Prior would be Consistent

(in the meaning used in this paper).
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A measure of the idea of Consistency is fairly straightforward. The

absence of Consistency can be measured by a standard deviation. For

example, if an estimation method has a low standard deviation of say 2.167

points, students with the same profiles will all have Priors within +/- 6.5 (3 σ)

points 99.73% of the time and +/- 4.334 (2 σ) points 95% of the time.

Determining the Bias is somewhat more difficult because the True Scores

(and thus the True Probabilities) are unobserved and unobservable objects. For

purposes of this study, Bias is defined as the deviation from an ‘Estimated True

Probability’ that the student meets the standard. While this is unknown and

unknowable, one can use a Frequentist definitional thought experiment to

describe the best estimate. One can then go on to develop an alternative

method to estimate that probability (a task left to other researchers). We are

interested in the “True Probability” of obtaining an Observed Score about the Cut

Score (on a given administration of a test):

• A Frequentist definition of of the ‘true’ probability that a student meets

the standard would be the proportion of times that the student passes

the test in a large number of administrations o the test22:

TP = lim Σ Qi / n (27)
n→∞ 

22 This could be exactly the same test or different forms of a given test.
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where

TP = A Student’s True Probability of Meeting Standards (Frequentist
definition)

Oi is the Observed Score of student takes the test for the ith time

Qi = 1 if Oi >= C

0 if Oi >= C

Σ Qi = the number of times the Observed Score is greater than the Cut
Score, and

n = Number of Times the Test Is Administered to the student.

• Unfortunately, this calculation is impossible because it is impossible to have

even a small number of test administrations (n) without the student learning

more or forgetting something that the Test is measuring23. However, the

practical difficulties in estimating this TP is a useful unobserved object.

Moreover, it is as reasonable to use it as it is to use the concept of a True

Score.

• It has been assumed that a True Score exists, or at least it is reasonable to

use the concept of a True Score. If a TP exists and the True Score exists,

there must be in a one-to-one correspondence between the two.

• If one knows the distribution which Observed Scores follow given a True

Score, one can calculate the following:

23 For example, allowing 3 weeks between tests to prevent an impact of a quick retest on
performance, it would take over half a year to administer ten tests. One would hope a student
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P (O >= C | True Score, other parameters). (28)

where O = Observed Score and

C = Cut Score

• This must be equal to the True Probability of equation 27.

• Classical Test Theory postulates that a confidence interval can be built around

the true score (Nunnally and Berstein, p. 240, and 260) and that this confidence

interval involves the SEM.

• If it is further assumed that the distribution is normal, we have the result:

TP = P (O >= C | µ = TS , σ = SEM) (29)

where O ~ N (TS, SEM).

It is not unreasonable, as a first approximation, to think that the Observed

Score has a normal distribution because many phenomena which are impacted

by a multitude of factors are approximately normally distributed (further research

might look at alternative distributions) and a student’s score on an individual test

is certainly influenced by a number of factors, including the following:

• The room in which the test is taken (from environment (light, temperature, air

flow, etc) to information posted on the walls),

• The student’s temporary state of health,

• Impact of ‘cramming,’

• Personal factors (for example, a recent fight with a friend or parent), and

• Whether or not breakfast was eaten the day of the test.

would learn during a half-year in school. In addition, a student could be expected to forget some
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Measures of Effect on Classification Success of Bayesian Estimate

In order to develop specifications for a Bayesian approach, it is necessary

to a) decide on a distribution of data to use as the basis for simulations, and b)

develop a metric of the degree to which a Bayesian classification is better or

worse than Observed Scores alone.

In determining the distribution of data to use as a specification, it was

decided to use an actual distribution of high stakes test scores rather than a

theoretical distribution (for example, the normal). There are three reasons for

this. First, working with a real distribution provides insights that might not be

available if one used a theoretical distribution24. Second, use of a actual

distribution of data provides a more realistic estimate of order of magnitude of

potential improvement possible if one applies a Bayesian approach in a single

‘real world’ case. Finally, the first two reasons combined will not only help

motivate other researchers to develop such approaches, but also positively

dispose policy makers to use them.

In addressing the other question, the development of a metric of the

degree to which a Bayesian classification is better or worse than Observed

Scores alone, it is helpful to look at Figure 15, which lists the combinations of

True, Observed, and Bayesian classifications which are possible for a single

student. Given that there are two possibilities (either Meeting or Failing to Meet

the Standard) for each of the three classifications (True, Observed, and

of the test content if not in school for 30 weeks.

24 The distribution chosen exhibits ‘digit preference.’
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Bayesian), the following table lists the eight (23) mutually exclusive and

exhaustive possible classifications. The computer simulation provides data with

which to calculate the proportion of these classifications and they are used to

calculate the metrics.

No. Code
TRUE

SCORE

Observed
Score

Method
Bayesian
Method

Compared With
Observed Score

Method, Bayesian
Classification Is

1 tfofbf fail fail fail Same

2 TfofBM fail fail Meet Worse
3 tfOMbf fail Meet fail Better

4 tfOMBM fail Meet Meet Same
5 TMofbf Meet fail fail Same

6 TMofBM Meet fail Meet Better
7 TMPMbf Meet Meet fail Worse

8 TMOMBM Meet Meet Meet Same

Figure 15: Possible combinations of classifications used in the main simulation
(Appendix B)

A reasonable measure of the degree to which the Bayesian approach

results in an improved classification will be called the Net Bayesian Advantage

(NBA). This is defined as a) the proportion of test takers classified correctly by

Bayesian Method (groups 3 and 6 in Figure 15) but incorrectly by the Observed

method minus b) the proportion of test takers classified incorrectly by the

Bayesian method but correctly by the Observed method (groups 2 and 7 in

Figure 15). Using the codes in the above table, this can be summarized with the
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following equation (where each code refers to the proportion of results with that

code): 

 

NBA = (tfOMbf + TMofBM) - (tfofBM + TMOMbf) (30)

Note: NBA can be positive or negative. Positive NBA indicates regions

where a Bayesian classification procedure with a given combination of the four

factors, Bias, Consistency, Reliability, and Cut Score is better than a procedure

using Observed Scores alone. Negative NBA indicates regions where a

Bayesian classification procedure with a given combination of the four factors,

Bias, Consistency, Reliability, and Cut Score is worse than a procedure using

Observed Scores alone.

While NBA is the main measure of a Bayesian method, a secondary

measure might be helpful in cases like the following. Two methods might have

the same NBA, but one of the “NBA’s” results could include in a larger number of

students who would have been correctly classified with the Observed method

being ‘reclassified’ incorrectly with the Bayesian method. In general, one would

prefer the method which does results in fewer new misclassifications of students

who would have been correctly classified under the Observed method. Thus the

following measure, Bayesian Worse than Observed (BWO) will also be used:

BWO = tfofBM + TMOMbf (31)

Note: BWO is the second parenthetical term of NBA.
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Ranges of Interest and the Central Composite Response Surface Design

Next, the range of values for variables under study is discussed. Two

groups of variables are studied. The first group relates to characteristics of the

Bayesian estimate (Bias and Consistency). The second group relates to

characteristics of the tests for which a Bayesian approach might be used

(Reliability and Cut Score). It is important to study the responses over ranges of

this second group of factors because one wants to insure that the procedures

can be use over a range of tests characteristics that are outside of the control of

those who are applying the procedure. The ranges selected for study are

summarized in the Figure 16 and discussed below:

Measure of Variable Name
RANGE OF
INTEREST

Low
Level

High
Level

Aspects
Bayesian
Estimated.

Bias Bias -15 15

Prior Probability
that the Student
Meets the

Consistency:
Range (3 Standard
Deviations)

N/A (see below) 6.50 18.00

Standard 1/3 of Range (One
Standard Deviation)

SDBias 2.1667 6.0000

Aspects
of the

Reliability Reliability 84.0 94.4

Tests Cut Score Cut Score 23 29
Figure 16: Range of variables of interest
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The primary25 rational for the ranges of Bias and SDBias that were

selected is to provide a wide coverage of deviations from a “True Probability” so

that the potential for improvement in classification for a potential Bayesian

approach could be studied under this wide range. This was done by looking at

the ranges that would be produced by combinations of Bias and SDBias. It is

reasonable to expect that any test will be most likely to misclassify a student

whose “True Probability” of obtaining a Observed Score about the Cut Score is

approximately 0.50, which is equivalent to saying that the True Score is

approximately equal to the Cut Score.

Figure 17 and 18 provide examples of calculation using addition and ‘build

up’ reasonable levels of the priors. The reader will notice that the Bias and

SDBias when added to the 50% can result in a wide range of prior probability of

meeting the standard. Calculations show resulting levels of prior for different

levels of Bias and Consistency (SDBias).

25 Other considerations included producing possible combination in a Central
Composite Design.
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Low High Low High
"True Probability" 50.0 50.0 50.0 50.0

Bias -15.0 15.0 0.0 0.0

+/- 2 SDBias
Impact -18.0 18.0 -6.5 6.5

Range 17.0 83.0 43.5 56.5

High Bias/
Low Consistency

Low Bias/
High Consistency

Figure 17: Build up of range of interest of Prior Probability, +/- 3 SDBias
example.

Low High Low High
"True Probability" 50.0 50.0 50.0 50.0

Bias -15.0 15.0 0.0 0.0

+/- 2 SDBias
Impact -12.0 12.0 -4.3 4.3

Range 23.0 77.0 45.7 54.3

High Bias/
Low Consistency

Low Bias/
High Consistency

Figure 18: Build up of range of interest of Prior Probability +/- 2 SDBias
example.

Specifically, for a True Score equal to the Cut Score, this study explores

ranges of Bias and SDBias that result in Bayesian Priors that have a 95%

confidence interval between 0.23 and 0.77 and a 99.73 % confidence interval

between 17 and 83. These High Bias/Low Consistency ranges, representing

the “worst case combination” examined in this study, are detailed in the two
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following tables. The “best case” ranges for the Low Bias/High Consistency

combinations are also provided. However, as the risk of any new Bayesian

Method would be that the ranges studied were not wide enough, it is the High

Bias/Low Consistency which are of most interest.

Next, the range of interest of characteristics of the test, Reliability and Cut

Score, will be discussed (See Figure 16). The range of Reliability that was

selected for study is 84.0 to 94.4. It is believed that this range of Reliability

covers a large number of modern high stakes tests. As the Reliability

approaches 100, the potential usefulness of any Bayesian method will diminish.

Indeed, a perfectly Reliable test would correctly classify almost26 every student

100% of the time. Few tests are anticipated to have Reliability above 94, and

thus 94.4 is a reasonable higher bound. The reason the high level is not “round”

number of 94.0 is due to the formula to selection of axial points in the Central

Composite Design. This will be discussed in the next section.

The Reliability and Cut Score centerpoints (defined below) of 89.2 and

26.0 respectively were deliberately selected to be the same as the actual

Reliability and Cut Score of the 99HS-MEAP-M. The lower bound of the Cut

Score range, 23.0, was selected to be half-way between the actual Cut Score

and the level at which the student is considered to meet the Michigan Standards

for the 99HS-MEAP-M at a “basic” level. This lower level is three away from the

centerpoint (26.0 – 23.0 = 3.0). The high bound of the range of interest, 29.0,
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was obtained by adding 3.0 to 26.0 (providing a symmetric range of 3.0 around

the centerpoint).

Central Composite Design (CCD)

A Central Composite Response Surface Design allows the estimation of a

quadratic equation that has good statistical properties in the range of interest.

To provide data to estimate this equation, in addition to points at the Low and

High end of the range of interest (which can be coded as “-1” and “+1”), a

Central Composite Design also has experimental runs at the center points

(halfway between the –1 and + 1 levels) which are coded “0” and at eight axial

points. The axial points are placed at a distance from the centerpoints equal to

+/- √ (number of factors). The +/- 1 levels are called the factorial points because

they constitute a two-level factorial design (in this case a 24 factorial). In this

study the number of factors is 4, so the axial points are at +/- 2 coded distances

from the centerpoints. For example, the Low Level of reliability is 84. This is 5.2

points from the centerpoint of 89.2. Thus, 5.2 if equal to a distance of 1, the

axial points are at 2 x 5.2 or +/- 10.4, or 78.8 (89.2 - 10.4) and 94.4 (89.2 +

10.4). These axial points are only used for estimation of the quadratic

equations and thus one does not view the Central Composite Design as

providing accurate information about the quadratic response surface at the axial

points (or beyond). Thus, the fact that in practice one would never encounter

26 The exception is that student whose True Score is exactly (at an infinite number of decimal
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some of the levels of the axial points (Reliability of 99.6, SDBias of 0.25

percentage points) is not a concern. Thus the levels of the variables in the

boxed area are of particular interest. The Axial points are used for estimation.

Variable Axial Low Center High Axial

BIAS -30 -15 0 15 30

SDBias 0.25 2.16667 4.08333 6 7.91667

-2 -1 0 1 2

RELIABILITY 78.8 84 89.2 94.4 99.6

CUTSCORE 20 23 26 29 32

Memo: 3 SDBias 0.75 6.5 12.25 18 23.75

Memo: Central
Composite Design
Code/Distance From
Centerpoint

Figure 19: Points of the Central Composite Design (CCD) used in the study.
Points of interest in box. Axial points are used for estimation of quadratic
response. Compare the 3 SDBias memo with Figure 17.

The following geometric representation of the 30 run design may help

to visualize the design. It includes 16 factorial points (at the corners of the

square, equal to the High [+1] and Low [-1] levels), six center points (coded 0,

the center points of the design is repeated six times to get a measure of pure

error), and eight axial points (two of which are projected in 3-space at the

same point as the center points on this figure).

places) equal to the Cut Score. That student would be correctly classified 50% of the time.
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-30
SDBias

80

-20
3

90

-10

100

0
2

10
1

Reliability

20 30
0Bias

26

20

32

26 (six
replicates)

29

23

Cut Score

Centeral Composite Design in Four Vairables:
Reliabilty, Bias , Standard Deviation of Bias, and Cutscore

Note:  The six small diamond axial points are equidistant from the centerpoint

Figure 20. Graphical representation of 4 dimensions of Central Composite
Design used in this study.

A reason the Central Composite Response Surface Design is so useful

can be seen in the following correlation matrix (Table 1). Specifically, the four

independent variables are completely uncorrelated. Thus, the resulting

equations for any response(s) have excellent statistical properties.

Table 1: Correlation of Reliability, Cut Score, Bias, SDBias
_____________________________________________________

Reliabily Cut Score Bias

____________________________________________________________

Cut Score 0.000

Bias 0.000 0.000

SDBias 0.000 0.000 -0.000

Cell Contents: Pearson correlation

___________________________________________________________
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Specifically, the interaction of these terms have zero correlation, as do

their squares. The fact that the given the 30 points selected, the four factors

are orthogonal and thus any difference estimated by the model is not due to

the selection of points and is “free and clear” of influence of other factors.

Figure 21 contains a list of the levels of the 30 runs of the simulation.

The “Standard Order” helps one understand the geometry of Central

Composite Designs. The “Run Order” is a random order in which the

simulations will be run in one computer session. It is also contains an

indication of whether a particular run is a Center Point (Center), Factorial

Point (Fact), or Axial point (Axial). This design was generated with Design

Expert ® (Helseth, et. al, 2000).
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Standard
Order

Run
Order

Point
Type

Reliability Cut

Score

Bias SDBias
Memo:

3 x SDBias

1 3 Fact 84.00 23 -15 2.16667 6.50
2 15 Fact 94.40 23 -15 2.16667 6.50
3 10 Fact 84.00 29 -15 2.16667 6.50
4 29 Fact 94.40 29 -15 2.16667 6.50
5 9 Fact 84.00 23 15 2.16667 6.50
6 21 Fact 94.40 23 15 2.16667 6.50
7 30 Fact 84.00 29 15 2.16667 6.50
8 25 Fact 94.40 29 15 2.16667 6.50
9 26 Fact 84.00 23 -15 6.00000 18.00

10 4 Fact 94.40 23 -15 6.00000 18.00
11 8 Fact 84.00 29 -15 6.00000 18.00
12 24 Fact 94.40 29 -15 6.00000 18.00
13 16 Fact 84.00 23 15 6.00000 18.00
14 20 Fact 94.40 23 15 6.00000 18.00
15 19 Fact 84.00 29 15 6.00000 18.00
16 14 Fact 94.40 29 15 6.00000 18.00
17 22 Axial 78.80 26 0 4.083335 12.25
18 1 Axial 99.60 26 0 4.083335 12.25
19 7 Axial 89.20 20 0 4.083335 12.25
20 11 Axial 89.20 32 0 4.083335 12.25
21 13 Axial 89.20 26 -30 4.083335 12.25
22 2 Axial 89.20 26 30 4.083335 12.25
23 23 Axial 89.20 26 0 0.250005 0.75
24 5 Axial 89.20 26 0 7.916665 23.75
25 27 Center 89.20 26 0 4.083335 12.25
26 18 Center 89.20 26 0 4.083335 12.25
27 17 Center 89.20 26 0 4.083335 12.25
28 12 Center 89.20 26 0 4.083335 12.25
29 6 Center 89.20 26 0 4.083335 12.25
30 28 Center 89.20 26 0 4.083335 12.25

Figure 21: 30 runs of the Central Composite Design (CCD) used in this study.
Note that the first 16 points (in the Standard Order 1-16) are factorial points,
corresponding to points on the corners of the square in Figure 20. Points 17
through 24 are Axial points, the “star” points in Figure 20, and Points 25 through
30 are centerpoints.



117

As stated at the beginning of this chapter, SEM is a mathematical

function of Reliability. The SEMs which are the actual input into the computer

programs are in Figure 22. These are calculated from equation 20.

Reliability Cut Score SEM

78.8 26 4.455165

84.0 23 3.870400
84.0 29 3.870400

89.2 20 3.179858
89.2 26 3.179858
89.2 32 3.179858

94.4 23 2.289760
94.4 29 2.289760

99.6 26 0.611964

Figure 22: Standard Error of Measurement used in simulation as function of
Reliability and Cut Score (factors in the Central Composite Design)
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CHAPTER 4

RESULTS AND RESPONSE SURFACE INVESTIGATIONS

Results of The Main Simulation

A simulation was run for each combination of the 30 combinations of

Reliability, Cut Score, Bias, and SDBias listed for the Central Composite Design

in Figure 21. Minitab® Statistical Software (Minitab, 2000) was used for the

simulations (Appendix B). The basis of these simulations was the same

1,038,044 Estimated True Scores (ETS) with each ETS being a row in the

Minitab® Worksheet. These were, in turn, 14 replicates based on each of the

74,146 actual scores of the 99HS-MEAP-M (Appendix A). A local Minitab®

macro was used to calculate selected constants corresponding for input the 30

runs of the CCD for the simulation (Appendix C). Figure 22 constants definitions

of these constants . Figures 23 and 24 contain definitions the names of

variables used in the main simulation (Appendix B).
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Inputs To Macro Which Changed For Experimental Run

Constant

Name Used
in Macro (In
Appendix B) Represents

Factor(s) In CCD
Determining
Constant

k1 Reliability Reliability Reliability
k2 SEM Standard Error of

Measurement
Reliability

k4 cut Cut Score Cut Score
k5 Bias Bias of the Bayesian

Estimate
Bias

k6 SDBias Standard Deviation of the
Bias of the Bayesian
Estimate

SDBias

k7 a Constant from Logistic
Regression

Reliability and Cut
Score

k8 b Coefficient from Logistic
Regression

Reliability and Cut
Score

Note: k7 is also called Const-LgstRegress
Note: K8 is also called Coeff-LgstRegress

Figure 23: Constants used in the Macro (Appendix C)
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Col. Name Represents How Calculated Comment
c1 ETS Estimated True Scores An input. Each

simulation begins with
these same numbers

c2 TM-Code TM if the True >=
CutScore, tf if True <
CutScore

Minitab “Code”
Subcommand

C3 e-O Random number to be
added to the true to
produce OO

Minitab Generate
Random Number for a
normal random deviate
with mean zero and
Std Dev = SEM

c4 OO Origional Observed c1 Plus c4
c5 Obs1 Trims c4 to be

between 0.0 and 49.0
Minitab “Code”
Command

c18 DcmlPt The decimal part of c5 Minitab “Floor”
Command

c19 DcmlPt
Rndd

Round c18 to 0, 0.5, or
1.0

Minitab “Code”
Command (If less than
0.33333), 0.5 (if
between 0.33334 and
0.66667), and 1.0 if >=
0.66667.

c20 Obs Non-Decimal part of
C5 plus c19

Minitab “Calc”
Command:
C20 = Floor C5 + C19

c6 OM-Code OM if the Obs >=
CutScore, of if Obs <
CutScore

Minitab “Code”
Command

c7 T-Prob P (O >= C | µ = ETS ,
σ = SEM)

Minitab CDF
Command for
P (O < ETS | µ = Cut ,
σ = SEM)

Equations
25 & 26

c8 e-bv-t-P Error term to add to the
true probability to get
the bayesian estimate

Minitab Generate
Random Number
Command for a normal
random deviate with
Mean = Bias and Std
Dev = STBias

c9 ibe Initial Bayesian
Estimate (Untrimmed)

c7 + c8

Figure 24: Description of Columns c1-c9 in the main simulation (Appendix B)
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Col. Name Represents How Calculated Comment
c10 Prior Prior Probability Trims

c9 to be between
0.005 and 0.995

Minitab “Code”
Command

c12 Data Prob “Data Probability,” The
probability of The True
Score Beign above the
Cut Score given the
logistic regression

Minitab “Calc”
Command:
C12 =
1/[1+E()**( -
1*['a'+'b'*'obs'])]

Equation
22

c13 Posterior Result of
Bayes’sTheorem

Minitab “Calc”
Command:
'Posterior' =
['Prior'/(1-
'Prior')]/(['Prior'/
(1-'Prior')] +
[(1-'Dat Prob')/'Dat Prob'])

Equations
9 and 23

c14 BM-Code BM if the True >= 0.50,
bf if Bayesian < 0.50

Minitab “Code”
Command

c15 Result The classification of
True, Observed Score,
and Bayesian

Conconnate c2, c6,
and 14, with The
Result being One
of the Following:
tfofbf
TfofBM
tfOMbf
tfOMBM
TMofbf
TMofBM
TMPMbf
TMOMBM

See
Figure
15

Note:
Tallies
are used
to
compute
NBA and
BYO in
Equation
29
Equation
30

Figure 25: Description of Columns c10-c15 in the main simulation (Appendix B)

Results Of Logistic Regression

Before discussing the results of the 30 experimental runs, the results of

the Logistic Regressions that are then inputs as the constants a (k7) and b (k8)

to the Macro which controls the simulations. There are unique regressions for

the unique Reliability/Cut Score combinations.
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Inputs Into Macro (Appendix C) Logistic Regression

Reliability Cut Score SEM Constant (a) Coefficient (b)

78.8 26 4.4552 -9.629 0.37735

84.0 23 3.8704 -9.833 0.43923
84.0 29 3.8704 -12.863 0.44116

89.2 20 3.1799 -10.127 0.53330
89.2 26 3.1799 -14.216 0.55140
89.2 32 3.1799 -17.456 0.54506

94.4 23 2.2898 -17.772 0.77809
94.4 29 2.2898 -22.868 0.78238

Figure 26: Inputs and outputs of logistic regression. Note: Properly speaking,
Reliability is not an input into the Macro. It does, however, determine the SEM
used in the Macro to generate the Observed Scores.

.

Selected Observed Test Scores and Data Probabilities
Based On Logistic Regression with a = -14.216, b = 0.55140

When Reliability = 89.2 and Cut Score = 26
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Figure 27: Example of one of the logistic regressions
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Results Of Experimental Runs

Results Output

Figure 28, below, contains the results of the 30 experimental runs of the

Central Composite Design. In addition to NBA (Equation 30) and BWO

(Equation 31), their sum which is termed Gross Bayesian Advantage (GBA) and

the ratio of the two NBA to GBA is presented.

GBA = NBA + BWO (32)

When the ratio of NBA to GBA is close 1, the improvement in classification is

without cost of new misclassification. While the main analysis of this study is

accomplished by an examination of response surfaces generated by regression

equations for NBA (Net Bayesian Advantage) and BWO (Bayesian Worse than

Observed)—which will not be reviewed until after a discussion of model

diagnostics—looking at the results in two other ways (inspection of the table and

a simple graphic) will motivate interest in the response surfaces27.

27 Had the regression diagnostics not been adequate it would have been
inappropriate to conduct this initial review.
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Information on CCD
Aspects of the High

Stakes Test
Characteristics of the

Bayesian Estimate Responses (All In Percent)
NBA/GBA

Ratio

Std
Odr

Run
Odr

Point
Type Reliability CutScore Bias SDBias NBA BWO GBA

Bias Vs.
Estimated
True Prob

Standard
Deviation of

Bais

Net Bayesian
Advantage

Bayesian
Worse Than

Observed

Gross
Bayes
Advtg

1 3 Fact 84.0 23 -15 2.167 4.69 0.22 4.91 0.955

2 15 Fact 94.4 23 -15 2.167 2.75 0.28 3.03 0.908

3 10 Fact 84.0 29 -15 2.167 5.41 0.54 5.95 0.909

4 29 Fact 94.4 29 -15 2.167 3.37 0.46 3.83 0.880

5 9 Fact 84.0 23 15 2.167 4.21 0.5 4.71 0.894

6 21 Fact 94.4 23 15 2.167 2.68 0.12 2.8 0.957

7 30 Fact 84.0 29 15 2.167 5.19 0.29 5.48 0.947

8 25 Fact 94.4 29 15 2.167 3.22 0.08 3.3 0.976

9 26 Fact 84.0 23 -15 6.000 4.64 0.25 4.89 0.949

10 4 Fact 94.4 23 -15 6.000 2.79 0.28 3.07 0.909

11 8 Fact 84.0 29 -15 6.000 5.35 0.61 5.96 0.898

12 24 Fact 94.4 29 -15 6.000 3.38 0.46 3.84 0.880

13 16 Fact 84.0 23 15 6.000 4.15 0.55 4.7 0.883

14 20 Fact 94.4 23 15 6.000 2.62 0.15 2.77 0.946

15 19 Fact 84.0 29 15 6.000 5.1 0.34 5.44 0.938

16 14 Fact 94.4 29 15 6.000 3.22 0.11 3.33 0.967

17 22 
 

Axial 78.8 26 0 4.083 6 0.04 6.04 0.993
18 1 Axial 99.6 26 0 4.083 1.33 0 1.33 1.000

19 7 Axial 89.2 20 0 4.083 3.38 0.05 3.43 0.985

20 11 Axial 89.2 32 0 4.083 4.69 0.05 4.74 0.989

21 13 Axial 89.2 26 -30 4.083 3.33 1.43 4.76 0.700

22 2 Axial 89.2 26 30 4.083 3.07 1.16 4.23 0.726

23 23 Axial 89.2 26 0 0.250 4.36 0 4.36 1.000

24 5 Axial 89.2 26 0 7.917 4.29 0.08 4.37 0.982

25 27 Center 89.2 26 0 4.083 4.35 0.01 4.36 0.998
26 18 Center 89.2 26 0 4.083 4.34 0.01 4.35 0.998

27 17 Center 89.2 26 0 4.083 4.37 0.01 4.38 0.998

28 12 Center 89.2 26 0 4.083 4.35 0.01 4.36 0.998

29 6 Center 89.2 26 0 4.083 4.33 0.01 4.34 0.998

30 28 Center 89.2 26 0 4.083 4.33 0.01 4.34 0.998

Figure 28: Result of Central Composite Design. Runs with NBA responses of
particular interest have added emphasis: Standard order #3 (largest response
5.41), #14 (smallest response), and #28 (a centerpoint).
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Two things stand out from an examination of this table. First, the Net

Bayesian Advantage is not only always non-negative, it is at least 2.6 percentage

points. It reaches a maximum of 5.41. Second, the ratio of NBA to GBA (which

might be seen as a measure of “pure” advantage to a Bayesian approach) is at

least 0.88 at the factorial points, which span the values of interest. Another

item worth noting is the closeness of the six experimental runs at the centerpoint.

NBA ranges from 4.33 to 4.37, a range of only 0.04 percentage points. This

indicates that the simulation is indeed stable.

Before a discussion of modeling diagnostics, one more initial impression

of the results of the simulations can be obtained by investigating the cube plot

(or cube graph), Figure 29.
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Figure 29: Cube Plot of NBA illustrating the average result of NBA at –1 and
+ 1 levels or Reliability, Cut Score, and Bias (with SDBias, a forth dimension
of the independent variables, held at the centerpoint of 4.083). Not that
moving along from the low level of reliability to the high level, whatever the
level of Bias or SD Bias, results in a change in NBA of about 2, more than the
change along any other axis.

Model of NBA (Net Bayesian Advantage)

In this section the Response Surface Model (RSM) for NBA (Net Bayesian

Advantage) is discussed. First, the summary equation, ANOVA, summary

statistics and model diagnostics (plots of residuals, leverage, etc.) are presented.

Next, the impact of the four factors (Reliability, Cut Score, Bias, and SDBias) on

NBA are explored through the Response Surface graphics, primarily contour

plots.
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NBA Equations, Summary Statistics, ANOVA, and Diagnostics of Functional
Form

Before presenting the regression equation, a note should be made about

the power transformation used. NBA2 rather than NBA was modeled. The

reason is that the diagnostics are much better for NBA2 than NBA indicating

better meeting of assumptions of a linear model. The decision to square the

response variable was guided by a Box-Cox Plot which indicated squaring the

response was a transformation which would stabilize the variance, that is, satisfy

the constant variance assumption. In the Box-Cox plot below, a transformation

of 1 (no transformation) is out of the 95% confidence interval for λ (the Greek

leter Lambda), the power transformation which minimizes the natural logorithm of

the sum of squares. Squaring is a ‘standard transformation’ which is esentially

the same as the best transformation, 1.98 which is recommended by the Design-

Expert® software (Helseth, 2000).
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Figure 30: Lambda plot indicating appropriateness of square transformation
for NBA.

The response surface equation for NBA2 (Equation 33) is both

parsimonious and useful. It is parsimonious because it does not include all of

the possible squared and interaction terms that were estimated in the full Central

Composite Design Response Surface Model (most terms which were not

significant were dropped in the reduced model presented here). In keeping with

standard Response Surface practice, all hierarchies are maintained. Thus, as

SDBias is incuded as an interaction term (the final term), the main effect of

SDBias is also included. (Note: the final term is included because the focus of

the study is Bias and SDBias.) It is useful in that it does include an interaction

term for the variables that are the focus of the study, Bias and SDBias, even
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though this interaction is not statistically significant (see ANOVA, Table 3 below).

(Design-Expert software only produces contour and 3D plots for interactions

included in the model). In addition, in keeping with standard Response Surface

Methodology practice, as SDBias is included in interaction terms, its main effect

is also included.

NBA2 = -80.513 + 0.419 * Reliability + 10.381 * CutScore - 0.775 * Bias

- 0.082 * SDBias -0.056 * CutScore2 – 0.009 * Bias2

- 0.073 * (Reliability * CutScore) + 0.008 * (Reliability * Bias)

-.002* (Bias * SDBias) (33)

Summary statistics for the Equation 33 are presented in Table 2 and the

Analysis of Variance in Table 3 below. This model has a very high Adjusted R2,

0.9887. Normally an R2 this high is suspect in Social Science research.

However, one must consider that the model is actually a summary of 30

simulations (each with 1,038,044 iterations, resulting in a total of 31,141,320

simulated test results) and that the simulations are use equations based on the

same four factors as the model. The closeness of fit can also be seen in Figure

31, a plot of actual and predicted values of NBA2.
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Table 2:
Summary statistics for Net Bayesian Advantage, Equation 33, Power
Transformation Lambda = 2
________________________________________________________

Statistic Value Statistic Value
________________________________________________________

Std. Dev. 0.84 R-Squared 0.9922
Mean 16.82 Adj R-Squared 0.9887
C.V. 4.97 Pred R-Squared 0.9796
PRESS 36.74 Adeq Precision 63.7980

____________________________________________________________

DESIGN-EXPERT Plot
(NBA)^2
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Figure 31: Actual vs. Predicted values of NBA2 indicating close agreement.
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The ANOVA table for NBA2 is presented in Table 3. With an F statistic of

284, the model is definitely significant. The model has significant “Lack of Fit.”

On reflection, this is not as serious of a problem as one might think. First, with

an R2 of over 0.99, the model does fit the data well. Second, when the residual

plots are reviewed, it will be see that the most extreme residuals are generally

axial points, which although they are used to estimate the model, they are not

within the range of interest. Third, the Sum of Squares for Lack of Fit is

calculated by subtracting the Sum of Squares for Pure Error from the Residual

Sum of Squares. Not only is the total Sum of Squares relatively small (producing

the high R2 of the first point), the Sum of Squares for Pure Error is based on the

six replicates at the centerpoints, which, as discussed above, produce very

similar results because the simulations are stable. Finally, the response has

already been transformed, and there is little that can be done to improve the fit.

While future research might model the results with different functional forms

(which would have to be more complex than the simple Central Composite

Design to prevent confounding—for example, a cubic term for Reliability

suggested by the Residuals vs. Reliability plot in Figure 39—for purposes of this

study it is concluded that the statistically significant Lack of Fit does not have any

practical significance for the purposes of this study.

Next, the statistical significance of variables is described. Of the variables

that are the focus of the study, Bias appears as statistically significant in three

terms: It main effect (Bias, variable C), its squared term (Bias2 or C2) and in an

interaction with Reliability (Reliability * Bias or AC). SDBias (variable D) is not
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statistically significant in any term. However, it is included in the model so the

response surface in Bias/SDBias (C/D) space can be examined in the response

surface and contour plots below28.

The other two variables, Reliability (A) and Cut Score (B), which are

aspects of tests to which a Bayesian approach might be applied, are statistically

significant. Reliability’s main effect (A), and its interactions with both Cut Score

(Reliability * Cut Score or AB) and Bias (Reliability * Bias or AC) are significant.

Cut score (B) and its square (B2) are included in the model. All significant terms

involving Reliability and Cut Score are significant at the 0.01 level.

28 One can not construct contour plots of variables excluded from the model in Design Expert ®
software (Helseth, et. al. 2000)
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Table 3
Analysis of Variance for Net Bayesian Advantage (NBA) Equation 33, with
Power Transforamtion Lambda = 2
________________________________________________________

Sum of Mean F
Source Squares DF Square Value Prob > F

________________________________________________________

Model 1789.23 9 198.80 284.14 < 0.0001

Reliability A 1423.88 1 1423.88 2035.06 < 0.0001
CutScore B 190.59 1 190.59 272.40 < 0.0001
Bias C 16.99 1 16.99 24.29 < 0.0001
SDBias D 0.60 1 0.60 0.85 0.3673

B2 7.28 1 7.28 10.40 0.0042
C2 127.75 1 127.75 182.58 < 0.0001

AB 20.79 1 20.79 29.72 < 0.0001
AC 6.48 1 6.48 9.26 0.0064
CD 0.053 1 0.053 0.076 0.7856

Residual 13.99 20 0.70
Lack of Fit 13.91 15 0.93 53.28 0.0002
Pure Error 0.087 5 0.017
Cor Total 1803.23 29

_________________________________________________________

Model Diagnostics Plots

As one of the major assumptions of linear models is that residuals are

normally distributed, examination of a Normal Probability Plot of residuals is an

important step. Figure 32, the normal probability plot of Studentized Residuals

does not serious provide evidence for severe non-normality, although there is a

slight departure near the center of the range, which may be due to centerpoints.
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Figure 32: Normal probability plot of Studentized residuals for equation 33.

Another basic diagnostic is to look for individual observations with

residuals that have extreme values, measured by the T-Statistic, plotted in

Figure 33. Such outliers may indicate simple problems (such as transcription

errors) or lead the researcher to investigate the observation to see if there is

something identifiable about the observation. Frequently used rules of thumb for

outliers are 3.0 and 3.5. None of the outliers here are beyond this level. An

investigation of one of the larger residuals, Standard Order #18/Run Order #129,

indicates that this is an axial point, which is beyond the range where we explore

the response surface. There is also a slight hint that residuals increase with as

29 Readers wishing more information on a residual may want to look at the results in Figure 28.
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the runs progress (which, since these are simulations, could only be due to

autocorrelation of the random number generators). However, this is not

dramatic.
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Figure 33: Outlier T statistics for residuals for Equation 33.

Another basic diagnostic is to look Residuals vs. Predicted values,

presented in Figure 34, below. In this case studentized values are examined.

Although all are within the rule of thumb of 3.0, one has been highlighted. Again,

this is an axial point (Standard Order #17). This plot provides mild evidence of

heterostochasticity, indicated by a hint of a v-shape, with a slightly greater

spread at the lower values of predicted. However, the response (NBA) has

already been squared to address heterostochasticity. Thus, few remedial

measures are available. Moreover, Figure 35, the graph of the Standard Error of
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the Estimate indicates small variation in the areas of interest. This area is Cut

Score from 23 to 29 and Reliability from 84.0 to 94.4. In this area SEE ranges

from about 0.26 to 0.38.
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Figure 34: Residuals versus fitted values for Equation 33.
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Figure 35: Standard Error of the Estimate (SEE) for Equation 33.
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The next four plots, Figure 36 through 39, display residuals versus each of

the four independent variables. Among the uses of these plots is the

determination if transformed factors should be added to the model. For

example, a quadratic shape for residuals versus a factor would indicate its

squared term should be added to the equation. None of the four plots is

dramatic, indicating no serious need for additional terms, such as raising one of

the variables raised to a higher power. There is, however, a vague suggestion of

a sinusoidal shape in the plot of Residuals versus Reliability, Figure 36. Again,

while this is not dramatic, future research might explore the potential of

improving the fit by adding cubic term. Such additions would require a much

larger number of simulations in and a much larger Central Composite Design

than is used in this study.
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Figure 36: Residuals of Equation 33 versus Reliability. Indicating a slight, but not dramatic,
sinusoidal shape.
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Figure 37: Residuals of Equation 33 versus Cut Score.
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Figure 38: Residuals of Equation 33 versus Bias.
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Figure 39: Residuals of Equation 33 versus SDBias.

The final two diagnostic plots for NBA (equation 33) are Leverage and

Cooks Distance. The leverage plot, Figure 40 indicates the weight of each

observation on the model. The weights are spread about their average,

indicating no unusually influential point. Not surprisingly, the four points with the

heaviest weight (all at 0.56) are axial points (Standard Order 19 through 22).



140

DESIGN-EXPERT Plot
(NBA)^2

R un N umber

Le
ve

ra
ge

Leverage vs. Run

0.00

0.17

0.33

0.50

0.67

0.83

1.00

1 5 9 13 17 21 25 29

Figure 40: Leverage plot for Equation 33.

The Cook’s Distances plotted in Figure 41 are generally well behaved.

One which stands out slightly is an axial point (Standard Order 21).
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Figure 41: Cooks Distances for Equation 33.
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Based on the model summary statistics and model diagnostics one can

conclude that it is appropriate to use the Response Surface Model for NBA in

Equation 33 which generated by a Central Composite Design. One can

confidently explore the impact of Bias and SDBias (the focus of the study) as

well as Reliability and Cut Score on Net Bayesian Advantage with response

surface contour plots and other plots.

Graphical Analysis of response surfaces: THE CORE OF THE ANALYSIS

The 30 simulations of this study, Figure 28, are summarized by the

Response Surface Model Equation 33. This equation is a five-dimensional

manifold, with one independent variable, Net Bayesian Advantage (NBA) and

four independent variables; the right hand side of the equation has a total of nine

terms (including regression constant, squared, and interaction terms). As a nine

term equation is beyond the ability of most observers to grasp easily, a number

of Response Surface graphs have been developed to aid in understanding this

equation. In this section, single factor, interaction, 3D (three dimension), and

contour plots for NBA are presented. A contour plot is a two dimensional

representation of a 3 dimensional surface (see Figure 43 for an example). Just

as a topographical map presents elevation for a given longitude or latitude, or a

weather map presents temperature, so too a contour plot for NBA represents

equal levels (slices) through the manifold at various X/Y combinations. In the

study, the X/Y combinations of most interest are Bias/SDBias (two aspects of a

Bayesian Prior), Reliability/Cut Score (two aspects of tests to which a Bayesian

approach might be applied), and Reliability/Bias.
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Three graphs will be of particular interest, Figure 44, Figure 49, and

Figure 55. Figure 44 is the contour plot for NBA as a function of Bias vs.

SDBias. These two characteristics were the initial focus of the study because

they are quantifications of the two important aspects of a Bayesian Prior,

Accuracy and Consistency (measured by their absence, Bias of the Prior and

Standard Deviation of the Prior, respectively). These are important because if

there were large ranges where combinations of Bias or SDBias result in low or

even negative values of NBA, it would be unwise to use a Bayesian approach.

Figure 49 is a plot of two aspects of the test, Reliability vs. Cut Score. These are

important as they can guide decision makers as to which tests would be most

susceptible to improved classification of students by use of a Bayesian

approach. The third graph of particular importance is the Perturbation Graph,

Figure 55. This graph is essentially a graphical summary of the first and second

order terms (excluding interactions) of Equation 33.

Several aspects of the following graphs are worth noting. Unless

otherwise indicated the actual response (that is untransformed NBA rather than

its square which was modeled) is graphed. This is an option of the Design-

Expert ®Software (Helseth, et. al. 2000). Another feature of the software is that

it adds to the contour plots a dot at design points, that is, combinations of the

factors at which experiments/simulations were run. If more than one point exists

at that combination, the number of runs is indicated. Finally, as a 3D or contour

plot presents 3 dimensions of a 5 dimension manifold, levels of the other two

independent variables must be chosen and held constant when a plot is printed.
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These are listed to the left of the graph. In general these are the centerpoints of

the CCD. It should be noted that Design-Expert software allows the careful data

analyst to dynamically vary independent variables which are not on the plot to

see the impact.

Impact of Bias and SDBias on Net Bayesian Advantage (NBA)

The initial purpose of this study is to determine what levels of two

characteristics of a Bayesian Prior (the probability that a student meets State

Standards), when combined with information from Observed Scores on a high

stakes test, will result in improved classification of the test taker as either

meeting or not meeting the standard when compared with the use of Observed

Scores alone. The two characteristics that are the focus of the study are Bias

and Consistency (which is measured by SDBias). An examination of their 3D

Figure 43 and Contour Plot, Figure 44 conveys a great deal of information

despite the fact that the interaction of Bias and SDBias is not statistically

significant in the ANOVA, p = 0.7856 (Table 3). This lack of statistical

significance is consistent with the Interaction Graph of Bias and SD Bias, Figure

42.
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Figure 42. Interaction graph of Bias and SDBias for Equation 33. As
the line do not cross and the standard error bars overlap, there is no
evidence of interaction between Bias and SD Bias.

From the 3D plot, Figure 43, below, one can gain a perspective regarding

the response of NBA to simultaneous changes in Bias and SDBias within the

area of interest (0% +/- 15 percentage points for Bias and SDBias between

2.167 and 6.000). As NBA, Bias, and SDBias represent only three of the five

dimensions of the Response Surface, levels must be chosen for the other two

factors, Reliability and Cut Score, which are aspects of any test to which a

Bayesian method for improving classification might be applied. In Figure 43 and

44 these levels are fixed at the centerpoints of 89.2 for Reliability and 26.0 for
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Cut Score, the actual Reliability and Cut Score (for Meets Standards) for 99HS-

MEAP-M, the results of which are the basis of the simulation.

A fruitful examination of the 3D plot, Figure 43, can begin by looking at the

Z-axis (the vertical axis) along which NBA is graphed. Three aspects are

interesting. First, NBA is always positive. Thus, at the centerpoints for Reliability

and Cut Score, a Bayesian method is always better than relying on Observed

Scores alone. Second, the range of NBA is between 4.0 and 4.4. This is a fairly

flat response, indicating anywhere in the range of interest of Bias and SDBias,

one would get approximately the same improvement. Again, this is consistent

with SDBias not being significant (see Equation 33 and Table 3).Thus, if the test

were again administered to a 75,000 group of students with the same distribution

of True Scores, a Bayesian approach with as much Bias as +/- 15 (on average)

and a SDBias of much as 6.0, would correctly classify at least approximately

3,000 more students than reliance on Observed Scores alone (4% of 75,000 =

3000). Third, there is definite curvature to the Response Surface relative to

changes in Bias. Thus, as one moves from –15 to + 15 NBA first goes up and

then down. This is due to the inclusion of a square term for Bias (C2) in the

model (see Table 3). Thus, as one would expect, Bias near zero results in better

classification.
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Figure 43: Response Surface of NBA (z-axis) in Bias and SDBias

The ‘floor’ of the 3D plot, a projection of the response surface, is the

Contour Plot. It is presented in Figure 44 to provide easier visual analysis. The

quadratic nature of the response of NBA as one mores from Bias of –15 to + 15

is clearly seen (the contours going from 4.2 to 4.4 and down to 4.0). Again, it is

primarily the result of the Bias2 term in Equation 33. Moreover, as one might

expect, the optimum level of NBA is reached near zero Bias. (The fact that it is

not at zero is addressed in the next paragraph.) On the other hand when one

goes from 2.167 to 6.000 in the SDBias dimension, the largest change in NBA is

0.1, 1/10 of a percentage point. This is consistent with SDBias (termed variable

D in the ANOVA, Table 3) not being significant in any term of the ANOVA. The
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lack of statistical significance of the Bias by SDBias interaction means that the

Response Surface is not twisted in this dimension. Thus, the 3D surface of

Figure 43 looks like a smooth vault of Roman arch.

In the Contour Plot, Figure 44, the contour line with a maximum of 4.4

has been drawn emphasized to help the reader notice that the maximum is near

the design point where 6 experiments were, as indicated by the 6 beside the dot.

The levels of the experimental variables at this point were Bias equal to 0,

SDBias equal to 4.083, (Bias and SDBias being read from the graph’s axes),

Reliability equal to 89.2, and Cut Score equal to 26.0 (Reliability and Cut Score

levels indicated in the “Actual Factor” note).
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Figure 44: Contour plot for NBA versus Bias and SDBias, detail.
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This quadratic curvature of NBA with respect to Bias is very clear in the

One Factor Plot, Figure 45, below. This plot is essentially looking at the ‘vault’

of the 3D plot of Figure 43 edge-on when Reliability, Cut Score, and SDBias are

set at their centerpoints (89.2, 26.0, and 4.083 respectively). This plot reveals

an interesting aspect of the response surface. While the maximum for NBA

(given the other factors) is near zero Bias, it is not at zero Bias.
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Figure 45: One factor plot for NBA versus Bias.

The One Factor Plot for SDBias is presented in Figure 46. Given that

SDBias is not statistically significant in any term (main, squared, or interaction) it

is not surprising that its graph is essentially a flat line as one goes from 2.217 to

6.0. Moreover, the error bars at the end points overlap.
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Figure 46: One factor plot for NBA versus Bias.

The initial purpose of this study was to determine what levels of two

characteristics of a Bayesian Prior (the probability that a student meets State

Standards), when combined with information from Observed Scores on a high

stakes test, will result in improved classification of the test taker as either

meeting or not meeting the standard when compared with the use of Observed

Scores alone. In the above One Factor Plot for Bias, Figure 46, as well as the

Contour Plot, Figure 44, one might expect the maximum NBA to occur where

Bias is 0 and that NBA would decrease symmetrically as the magnitude of Bias

increases whether in a positive or negative direction. This would be consistent

with a statistically significant term for expect Bias2 and no statistical significance
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for the main effect of Bias. While the ANOVA Table 3 does indicate the

expected statistically significance for Bias2 (F-Statistic of 182.58 with P-value

less than 0.0001), the main effect of Bias is also statistically significant (F-

Statistic for of 24.29 with P –value of less than 0.0001). The impact of this

combination of significance for main and square effects of Bias can be further

explored by limiting the range of Bias in a contour plot to +/- 8.0, as in Figure 45,

below. NBA reaches a maximum at approximately a Bias of –2.8 (the ‘peak’

indicated by the Predi(ction) flag). The fact that the offset in the negative

direction is due to the negative coefficient on Bias in equation 33. The strength

of the statistical signal (p < 0.0001) suggests that this is not just due to random

chance, i.e., a result of the samples resulting from the simulation. While the

opportunities for further research on this topic are discussed in Chapter 5, the

following discussion is sufficient for the present.
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Figure 47: “Close up” contour plot of NBA as a function of Bias and SDBias.

When the planning for this dissertation was in the formative stages, the

major advisor, Professor Shlomo S. Sawilowsky, suggested that using an actual

distribution of high stakes test scores be used rather than relying on simulating

scores (for example, using a normal distribution). Among the reasons for this

was the work of Micceri (1989) who found that the Observed Scores of many

educational and other psychometric tests were severely non-normal and might

exhibit features like digit preference. Digit preference is means that there might

is not a smooth transition between adjacent scores. Looking at the underlying

data used in this study, actual scores of the spring 1999 administration of the

Michigan Educational Assessment Program High School Mathematics test
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(99HS-MEAP-M), Figure 12, one sees that the distribution is far from normal and

a substantial digit preference exists.

Although it is a subject for further study in this research program, it may

be that the distribution of true scores makes a difference to where the optimum

Bias falls. However, while this is an interesting aspect of Bias, it is unlikely to be

of great practically significant.

Impact of Reliability and Cut Score on Net Bayesian Advantage (NBA)

There are a number types of factors which would influence the usefulness

of a Bayesian approach in classifying more of test takers correctly as either

meeting or not meeting a standard of a high stakes test. Among these are

aspects of the test takers, the Bayesian Priors, and the tests. The abilities of the

students, reflected in the distribution of skills/knowledge of the students, has

been held constant by the use of a single distribution of Estimated True Scores

which is based on the actual scores of the 99HS-MEAP-M. Discussions above

indicate that exploring this might be of interest, though perhaps of limited

practical significance. This same discussion indicated that, within range under

investigation, Bayesian Priors within a broad range of Bias and SDBias

consistently improve NBA (Net Bayesian Advantage) which is the measure of

improved classification though a Bayesian approach. Next we will explore

aspects of the tests themselves. It is important to look at aspects of the tests to

insure that a Bayesian approach might have wide applicability. The two aspects

of the test selected here are Reliability and Cut Score.
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In this section the impact of two aspects of the test—as opposed to the

estimators of the Prior Probabilities—are explored. Specifically the impact of

Reliability and Cut Score on the improvement in classification of test takers

obtained by using a Bayesian approach versus relying on Observed Scores

alone is examined using Response Surfaces and Contour Plots. This

improvement is measured by NBA and modeled by Equation 33. As with the

other two factors (Bias and SDBias) the analysis begins by reviewing a 3D plot.

Figure 28 has NBA on the Z-axis and Reliability and Cut Score on the X/Y axes.

The levels of the other two factors must be chosen for a 3D representation of a

five dimensional manifold. The centerpoints of Bias (0.0) and SDBias (4.083)

are used. When compared with the 3D surface of NBA versus Bias/SDBias

presented in Figure 43, the Relaibility/CutScore surface (Figure 48) has a very

different shape (a plane with a slight twist rather than a smooth vault) and a

much wider range of NBA (about a 2.5 percentage point range from about 3 to

5-½). This relationship of Reliability, Cut Score, and NBA is more clear in Figure

49, the Contour Plot. This Contour Plot has the same center point levels of Bias

and SDBias, 0.0 and 4.083, respectively.
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Figure 48: Response surface of NBA as a function of Reliability and Cut Score
(equation 33).

In the contour plot below, Figure 49, which covers the range of interest of

Reliability and Cut Score, NBA is at a minimum (3.01) in the lower right hand

corner (Reliability equal to 94.4 and Cut Score equal to 23) and at a maximum

(more than 5.47) in the upper right hand corner (Reliability equal to 84.0 and Cut

Score equal to 23). The steepest downward gradient is in the direction of

increased Reliability. For example, moving from Reliability of 84.0 to 94.4 along

a Cut Score of 23, NBA drops 1.69 percentage points, from 4.70 (as seen in the

contour that intersects the origin) to 3.01 (as indicated by the Predi[cted] flag). In

contrast, going up the Cut Score axis from 23 to 29 results in an change which is

nearly a full percentage point less in absolute magnitude (0.77 vs. the previously

discussed 1.69), from 4.70 to 5.47. In addition, by inspecting the contours of
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NBA at the various levels of Cut Score, we can see that moving from Reliability

of 84.0 to 94.4 results in decreases of 1.69 to 1.94.
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Figure 49: Contour plot of NBA from equation 33 by Reliability and Cut Score
with Bias and SDBias at their centerpoints.

In Figure 49, Bias and SDBias were held constant at their centerpoints.

Figure 50 below holds these two factors constant at two different levels. Again,

NBA is the response of interest. Here levels of Bias and SDBias which are

factorial points, the +1 levels for values for Bias (+15.0) and SDBias (6.0) are

selected. These are the levels that result in a contour plot with smallest NBA
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(within the levels of Reliability and Cut Score of interest). Here NBA is at least30

2.55 (at the bottom right corner, marked with a dot to indicate a simulation was

run at this combination of the four factors) and is as high as 5.12 percentage

points. The change in NBA as one moves along either the Reliability or Cut

Score axis is approximately the same as when Bias and SDBias are at their

centerpoints (in the prior Contour Plot, Figure 49). Thus, one can see that the

relationship of interest (the change in NBA given changes in Reliability and/or

Cut Score) is consistent across a wide range of values of these two aspects of

the test.

30 It is worth stressing that with these results NBA is always positive throughout
the range of variables studied; thus a Bayesian approach will always improve
classification by 2.55 percentage points in the region studied.
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Figure 50: Contour plot of NBA from equation 33 by Reliability and Cut Score
with Bias and SDBias at a factorial point.

Reliability has a statistically significant interaction with two factors, Cut

Score (p < 0.0001) and Bias (p = 0.0064) (see ANOVA Table 3). The

Reliability/Cut Score interaction (which is an interaction between two aspects of

the test) was explored above. The discussion now moves to an interaction of an

aspect of the test (Reliability) and an aspect of the Bayesian estimate (Bias). In

the following 3D graph, Figure 51, the interaction of Reliability and Bias (with Cut

Score and SDBias at their centerpoints of 26.0 and 4.083, respectively) can be

seen in the fact that the Response Surface is a slightly curved and an even more

slightly twisted plane. Again the relative impact of Reliability and Bias is easier to

see in the Contour Plot.
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Figure 51: Contour plot of NBA from equation 33 by Reliability and Bias.

In the corresponding Contour Plot, Figure 52, one can see that the impact

of changing Reliability is much greater than that of changing Bias. Starting at a

Bias of 0 at low Reliability of 84.0, one passes from contours at NBA of 5.1 to 3.4

as Reliability increases to 94.4. On the other hand, the largest increase in NBA

contours one can achieve traveling from Bias of –15 to +15 is only about 0.4

points.
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Figure 52: Contour plot of NBA from equation 33 by Reliability and Bias.

This graphical section on aspects of the tests concludes with the One

Factor Plots for Reliability (Figure 53) and Cut Score (Figure 54). Again the

software provides a warning that One Factor Plots should not be looked at alone

unless the interactions are explored (as has been done above). These graphs,

which have the same scale for NBA, indicate more impact on NBA by changes in

Reliability. It is not surprising that more Reliable tests result in lower NBA, for a

perfectly Reliable test would always classify the test takers the correctly. The

impact of Cut Score may be significant because of the shape of the distribution

of True Scores.
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Figure 53: One factor plot for Reliability. Note the large change in NBA as one
moves from lower (84.0, coded as -1) to higher (94.0, coded as +1) Reliability.
(The computer generated warning is an indication that interactions should be
studied, which has been done above).
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Figure 54: One factor plot for Cut Score. Note: The change in NBA as one
moves from a lower (23.0, coded -1) to a higher (29.0, coded +1) level of this
factor is smaller than the change in NBA for a corresponding change in
Reliability, presented in Figure 53. (The computer generated warning is an
indication that interactions should be studied, which has been done above).
.

The following graph, a Perturbation Graph (Figure 55), along with Figures

44 and 49, is one of the most important graphs in the study. It can be seen as a

graphical summary of many of the results discussed to this point in the paper

and it provides the motivation for the next Chapter. In this Perturbation graph for

NBA, the quadratic impact of Bias (line C) is clear, as is the fact that its optimum

is not at zero. SBBias (line D) is flat, consistent with its lack of statistical

significance. The most dramatic impact if of Reliability (line A), which has a

negative impact on NBA (more reliable tests resulting in a smaller advantage for

a Bayesian approach). The positive impact of Cut Score (line B) is also
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apparent. The next section explores the impact of Reliability and Cut Score on

NBA (Net Bayesian Advantage).
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Figure 55: Perturbation graph for equation 33. This is a graphical summary of
the relative impact of the main and squared effect of the four variables in the
study.
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A Note of the Costs of the Bayesian Approach: BWO (Bayesian Worse Than
Observed)

The major results of the prior section are that, for the data under

examination (Appendix A):

• Over the range studied of two aspects of the test (Reliability and Cut Score),

a Bayesian approach would have improved the classification of test takers,

and

• Over the range studied of two characteristics of the Bayesian Prior

(Consistency [measured by the standard deviation around the Bias, SDBias]

and Bias) a Bayesian approach would have improved the classification of test

takers.

In addition, changes in Bias (Bias between –15.0 and + 15.0 and SDBias

between 2.167 and 6.0 had little impact on NBA, Net Bayesian Advantage. On

one hand this is good news because of the difficulty in evaluating the Bias and

Consistency of a Bayesian Prior31. This good news might be taken as suggesting

the surprising conclusion that little effort should be expended in attempting to

develop an unbiased estimate which relates to the ‘True Probability’ that a test

taker does or does not meet the standard (see equation 29 and related

discussion) because it will have little impact on the net number of test takers that

will be correctly classified. However, this conclusion could only be valid if NBA

31 See chapter 5 for discussion regarding that this is not an uninformative prior.
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were the only measure of adequacy of the Bayesian Prior in which policy makers

and practitioners were interested.

To aid this discussion, Equations 30 and 31 are repeated below.

NBA = (tfOMbf + TmofBM) - (tfofBM + tfofBM) (30)

BWO = tfofBM + tfofBM (31)

BWO is part of NBA that adjusts NBA for classifying some test takers

incorrectly when using a Bayesian approach while using the Observed Score

alone would have resulted in the correct classification. One would wish BWO to

be as small as possible for a given level of NBA. For example, a Net Bayesian

Advantage of 2% could be achieved in a number of combinations of the factors

in Figure 28 Specifically, it could result from a Gross Bayesian Advantage of 5

and a BWO of 3, or a Gross Bayesian Advantage of 2.1 and a BWO of 0.1.

Assuming that it is preferable not to “fund” the NBA at the expense of test takers

who would otherwise be correctly classified, the second case is far preferable

because 2.9% more of students who would have been correctly classified with

the Observed Score approach as compared with the second case (BWO of 3.0 –

0.1 = 2.9). While it has been shown in the previous section that Bias matters

little with respect to NBA, this section will explore whether Bias impacts BWO.

BWO was modeled separately using Response Surface Methodology and

the same independent variables that were used for NBA. As this section on

BWO serves as a cautionary note for implementation, a full analysis of the

adequacy of the resulting Response Surface Model (Box-Cox transformation,
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ANOVA and residual analysis, leverage analysis, etc.) is beyond the scope of

this paper. However, two of the contour plots will be presented in this section

and their implications discussed in Chapter 5.

Figure 56 presents a contour plot for BWO (Bayesian Worse than

Observed) as a function of Reliability and Bias when Cut Score and SDBias are

held constant at their center points of 26.0 and 4.083, respectively. This is a

graphical representation of the linear, square and interaction effects of Reliability

and Bias on BWO. Over the range of interest for Reliability (84.0 to 94.4), BWO

changes less than 0.1 (at Bias = 0). This contrasts shapely with NBA, where

Reliability is the factor with the most impact.
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Figure 56: Contour plot of BWO as a function of Reliability and Bias with Cut
Score and SDBias held constant at their centerpoints.
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In Figure 57 the impact of Bias and Reliability is once more explored, the

difference being that Cut Score is now held at 29.0, the high range of the area of

interest (coded as +1 in a CCD). Here BWO reaches almost ½ of 1% when Bias

is at -15.0, regardless of the level of reliability. In the data set under study, this

would result in 375 (75,000 x 0.005 = 375) test takers being incorrectly classified

using a Bayesian approach than would have been correctly classified if

Observed Scores were used. This could be reduced to at most about 70

students with Bias near zero (75,000 x 0.0009 = 67.5).
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Figure 57: Contour plot of BWO as a function of Reliability and Bias with Cut
Score held constant at 29.0 (coded +1) and SDBias held constant at its
centerpoint.
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From the above, it is clear that although use of Bayesian approaches is

preferable to reliance on Observed Scores alone (for this dataset) on a net basis,

regardless of Bias, reduction in Bias does result in a fewer test takers going from

a correct classification to an incorrect classification. Thus, small bias in Priors is

preferred.
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“The final arbitrator in philosophy
is not what we think

but what we do.”
Ian Hacking

CHAPTER 6

CONCLUSIONS, PRAGMATIC APPLICATIONS OF RESULTING

PSYCHOMETRIC MODESTY, AND FURTHER RESEARCH

Synopsis of Chapters 1 through 4

A brief synopsis of the paper to this point is in order before discussing

conclusions, possible pragmatic applications, and areas of further research. In

the Introduction (Chapter 1) the role of high stakes educational tests was

discussed. These tests have profound consequences for students, parents,

teachers, schools, school districts, communities, and politicians. The

consequences include graduation, teacher bonuses, pay and promotions,

scholarships, and even property values. In the Review of Philosophical

Foundations and Other Literature (Chapter 2), a Bayesian Epistemological

Framework was demonstrated to be reasonable. The expanding role of

Bayesian statistics in educational research, particularly IRT, was noted.

Chapters 3 and 4 explored the use classical statistical procedures (Monte

Carlo Simulation, Logistic Regression, and Response Surface Methodology) to

determine under what circumstances a Bayesian approach might result in better

classification of high stakes test takers than Observed Scores alone for one
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specific high stakes test32. The specific circumstances considered were aspects

of a potential prior estimate of a student’s chances of passing (Accuracy and

Consistency, measured by their absences, Bias and SDBias) and aspects of the

test (Reliability and Cut Score). The ancillary hypothesis of Classical

Measurement Theory was employed to obtain a set of estimated true scores

from a set of Observed Scores. The Priors were combined a Data Probability

(based on a logistic regression which in turn was based calculation from the

Observed Score) using a form of Bayes’s Theorem favored by philosophers to

produce a posterior probability and classification (meeting or not meeting

standards). It was found in the case studied that over a wide range of Bias and

Consistency of the prior as well as a wide range or Reliability and Cut Score for

the test, between 2-½ % to 5-½ % additional test takers would be correctly

classified (as having the same classification as the Estimated True Score) than

would have occurred using Observed Scores alone.

Conclusions and Further Research

As only one test in one subject in one state for one year was used

(Appendix A), the results by no means generalizable to all high stakes tests.

However, a reasonable conclusion is that that the study provides strong evidence

that there are circumstances in which a Bayesian approach can improve the

classification of students if our interest is classifying them according to their ‘true’

level of educational attainment rather than using a mere operational approach.

32 The Michigan Educational Assessment Program (MEAP) High School Test—
Mathematics (Form E) for 11 Grade First Time Testers in Spring 1999 (Appendix A).
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The operational approach defines meeting an educational requirement as

receiving an Observed Score equal to or above the Cut Score on any permitted

administration of a test. At minimum this study supports the contention that

additional research in this area might be fruitful.

The Results of Chapter 4 are certainly motivation for further scientific

research. This would include the impact of other functional forms of distributions

of True Scores (compared with that used in the study, see Figures 12-14), the

detailed empirical modeling of BWO (proportion of testers who would have been

correctly classified using Observed Scores alone but are incorrectly a Bayesian

approach), and the investigation of instances of several anomalous results (NBA

not reaching at its maximum when Bias is zero).

In the present study only one distribution of scores was used (Attachment

A). Future research should include collections of data (from the literature or by

contacting state Departments of Education directly) on actual administrations of

a number of high stakes tests, including distributions of Observed Scores, Cut

Scores, and Reliability), for example, Cronbach’s Alpha. This task is part of the

present research programme. Second, research on predicting Observed Scores

could be used in developing better information on the Priors used in future

studies. This could draw on the work of other researchers on the prediction of

success in high stakes tests. One would expect there is already research

underway on estimating observed high stakes test outcomes from other student

data (perhaps grades, absenteeism, difficulty of courses, etc.
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With these two elements in hand, Response Surface Methodology can

be used to develop generalizable models for NBA (Net Bayesian Advantage) and

BWO (Bayesian Worse than Observed) and each of the eight classifications in

Figure 15. In addition, although it is not the focus of this research program,

these models would also be informative as to the potential improvement in

correct classification from incremental improvements in Reliability. Another

important question concerns bias. It is possible that more students of specific

ethnic and SES (socioeconomic status) groups would be reclassified because of

access to factors which might be in an equation which models anticipated

probability of being proficient. This would include attendance, access to

rigorous33 and advanced placement courses, etc.

Pragmatic Applications and Further Research

Even if further research indicates that a Bayesian approach generally

results in substantial classification improvement (which the present author

considers likely in view of the results of Chapter 4), this in itself is not sufficient to

recommend practical application of the approach. Keeping in mind “Hume’s

guillotine,” the philosophical principle which states that ‘one cannot derive an

ought from an is,’ it is clear that additional research and judgments are needed

before specific actions informed by the anticipated confirming research on the

superiority of a Bayesian approach can be specified. Moreover, as the very idea

33 Names of courses are not sufficient. Anecdotally, I have heard it said that in
some urban school districts a teacher might be teaching class called “Algebra II.”
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of meeting an educational standard is a social construct specified by a

technopolitical process, political34 considerations must be considered before

using Bayesian reclassification.

A key—perhaps the most important—question is whether students who

would be reclassified as being proficient by a Bayesian approach would be likely

to be classified as proficient if retested. A similar question could be asked of

students who are reclassified using alternate means, such as portfolios. Pilot

studies could determine this through data analysis without actually changing the

student’s status.

Before implementation of such a policy, research is needed to determine

if students who would be reclassified would be likely to study and learn a) more

or b) less. In other words, what is the likelihood of students being better or more

poorly educated? For example, it is possible that a student who is ‘reclassified’

as proficient by a Bayesian approach will ‘coast,’ whereas one who has been

classified as not proficient by an Observed Score approach will work harder to

learn what is necessary to ‘pass’ the test.35

Assuming future research produces data that increases our confidence36

that a) a Bayesian approach will result in more accurate classification of testers

as meeting educational requirements, and b) students who are reclassified will

when in fact the material is at a pre-algebra level.

34 Politics has been defined as the art of the possible.
35 It is possible that research by others will indicate students who face the
prospect of a high stakes test are more likely to study—and thus learn more—
than those hat do not.
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learn no less, it is still not sufficient to use a Bayesian approach.37 There are two

types of questions remaining: Political and cost/benefit. (Figure 58 provides a

flowchart including research and cost benefit factors. The path that the present

author considers the most likely is in bold.)

36 Note Bayesian phraseology.

37 Note: The method for doing the reclassification is beyond the scope of this
paper.
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Figure 58. Potential pragmatic application
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While it might be politically acceptable to seem to “give students credit” for

their school performance in reclassifying them from ‘not meeting standards’ to

‘meeting standards (this could be done, among other ways, with a logistic

regression equation based on grades, attendance, and course rigor), it is unlikely

that it would be acceptable for students to be reclassified as ‘not meeting

standards’ if their Observed Score was above the Cut Score. Two “thought

experiments” of a hypothetical state uses such Bayesian reclassification are

sufficient to demonstrate the political minefield that classification from meeting

standards (judged by Observed Score alone) to not meeting standards

(combining Observed Score and Bayesian Priors).

Imagine the Speaker of the State Legislator, the head of the opposition

party, and the State Superintendent of Education and Chair of the State Board of

Education are in the Governor’s office watching one of the following two news

reports:

• Internationally known civil rights leaders are holding a news

conference on the steps of the state capital with dozens of high school

students—both minority and poor non-minority students—decrying the

injustice of reclassifying students who have ‘passed’ the high stakes

test as not passing, with the result that they are unjustly denied a high

school diploma.

• One of the state’s senators in Washington, who happens to be the

Chair of the Senate Education Committee, is on the US capital steps

announcing she is about to launch an investigation into adjustment of
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scores of high stakes tests. (She had just received a letter indicating

that although her son had an Observed Score equal to the Cut Score,

he had been classified as not meeting state standards based on an

adjustment based that includes opinion.)

As many politicians (and politically astute educational administrators) are

adept at avoiding political embarrassment like those in the two thought

experiments above, any system which uses prior information to reclassify testers

who have Observed Scores at or above the Cut Score as ‘not meeting

standards’ is unlikely to be adopted, whatever the scientific justification. This

leaves the possibility of adopting systems which use prior information to

reclassify testers who have Observed Scores below the Cut Score as meeting

the standard.

While it may make intuitive sense to “give students credit” for other work

and achievements in classifying them as proficient, there is the possibility that

some journalists, business people, and parents (and educators who do not

understand Classical Measurement Theory—which may be a majority) will see

Bayesian reclassification as a lowering of standards. There are four approaches

(which can be combined) to overcoming these objections:

1. Demonstrate that most students are really already proficient,

2. Demonstrate that most will eventually be classified as proficient,

3. In conjunction with either of the above, stress the ethical aspects of

reclassification,

4. Demonstrate potential cost savings from reclassification.
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The first approach, convincing people that most of the test takers are

really proficient is the most technically compelling reason but also perhaps the

hardest to accomplish. For many people, it would require a compelling

illustrative example, like that given of the four students38 in the last section of

Chapter 3. For those technically inclined, a basic introduction to Classical

Measurement Theory could be provided. Another approach would be to point

out that in pilot studies of potential Bayesian reclassification—which must be

done—students who would be reclassified form not proficient to proficient

generally meet the requirements, either through retest or an alternative path.

The third approach would be, after making one or both of the prior cases, to

argue that it is immoral, given the high probability that the student does or will

meet the requirements, to give them what may be a life long penalty—denial of a

high school diploma, when the really deserve one.

The final argument is that Bayesian reclassification (from not meeting

standards to meeting standards) will save school districts, the state, and

ultimately the taxpayers’ money. This can be used as a stand alone argument or

as an argument in response to those who say given there are (in most states39)

38 The story had four students including one who hears answers during a radio
news program on the way to the test and another who has just discovered she
may be pregnant.

39 “Examples of alternative paths for general education students (those who are neither special
education students nor English language learners) include permitting students to meet the exam
requirements by substituting scores on other tests like the SAT or ACT; taking a state—developed
alternative assessment; pursuing a waiver or appeals process; receiving credit towards exam
scores for satisfactory course grades; demonstrating competency by providing other evidence [the
present author assume this includes portfolios]; and using various combinations of options.
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alternative paths for a student to demonstrate competency, the Bayesian

approach is not needed. However even if states continue to maintain alternative

paths of demonstrating proficiency, a Bayesian approach can reduce the number

of students subject to:

• Remediation,

• Retesting, and

• Alternative measures of proficiency (such as portfolios). 

Figure 59 contains a histogram of the number of tests in each of the 25

states which require passing standardized tests for graduation, etc.. Given this

data, it is reasonable to calculate the approximate number of students for whom

the state would not have to have extraordinary costs for up to an average of 4

tests. Given about 15 million high school students, Figure 60 presents some

orders of magnitude of the number of students who would not be required to go

through alternative processes if we assume 2% would be classified from not

proficient to proficient by a Bayesian procedure. This is not an unreasonable

number, for it is half of NBA, which includes reclassification in both directions.

Obviously, detailed research is needed, but the potential benefit, both in terms of

cost to the taxpayer, to the students, and to society is great indicating the

potential value of such research.

California, where policymakers have chosen not to allow alternatives for general educations
students, is a notable exception (Center on Educational Policy, 2006. p 3.)
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Figure 59: Number of high stakes tests in the 25 states with such tests, 2007
(Centre on Educational Policy, 2006, pp. 10),
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Number of High Stakes Tests
1 2 3 4

Total High School Students
(Approximate) 15,000,000 15,000,000 15,000,000 15,000,000

Proportion of Students Subject
ot High Stakes Tests 76% 76% # 76% 76%

Proportion First Time High
Stakes Tests 25% 25% # 25% 25%

Number of First Time High
Stakes Testers 2,850,000 2,850,000 2,850,000 2,850,000

Number of Tests 1 2 3 4

Approximate Percentage
Reclassified to "Meet
Standards" 2% 2% 2% 2%

Approximate Bayesian
Reclassifications To "Meets
Standards" Per Year 57,000 114,000 171,000 228,000

Figure 60: Illustration of order of magnitude of reclassifications from a Bayesian
approach to reclassifying testers form not proficient to proficient only. Data of
number of high school students, the world almanac and book of facts 2007, pp.
402-403.

A Minimalist Hope: “Psychometric Modesty”

The fact that large improvements in classification might be gained by a

Bayesian approach should inspire what might be called “Psychometric Modesty,”

that is, that society (politicians, government officials, educational administrators,

educators, parents, students and the public at large) should not claim for its

standardized tests more power to discern the correct classification of test takers

than these tests actually possess. It is ironic that this ‘modesty’ is inspired by a

Bayesian approach as one of the arguments against Bayesians is the tolerance

of outlandish prior probabilities—which could be seen by some as

“epistemological immodesty.” However, given there is the possibility for
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substantial improvement in classification even with procedures that are modestly

successful in generating Priors,40 great care should be taken in evaluate the

meaning of high stake test results. Indeed, while such tests may be useful for

some purposes (for example, drawing attention to possible school systems or

schools within systems in need of drastic improvement), using them for

distributing societies profound rewards and punishments, particularly to

America’s youth, is a grave action that should only be taken with due care. It is

minimally hoped that this paper, and the research programme of which it is the

foundation, will contribute to a growing “Psychometric Modesty” where such high

stakes tests are concerned.

40 Where modestly successful means the priors can have relatively low accuracy and consistency
(high Bias and SDBias).
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APPENDIX A
MICHIGAN EDUCATIONAL ASSESSMENT PROGRAMS SCORES USED

Note: This is a Fax from the Michigan’s MEAP Office
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APPENDIX B
MACRO FOR THE MAIN SIMULATION

GMACRO
DafRo06.mac

# master macro for all experiment runs for DAF's dissertation
Note This Macro written September 14, 2003
Note
Note This macro to generate observed scores,
Note prior probabilities, and posteriors to perform one
Note complete experimental run of DAF's dissertation

# EACH 'daf... macro' HAS DIFFERENT INPUT FOR
# K50, k30, k1, k2, k4-k8

#What is the Random Order
Let k50 = 6
#What is the Experiment Designator: Random Order . Reliability and cut
score
Let k30 = 6.89226

# What are the Reliability (k1), SEM (k2), and Cutscore (k4)

Let k1 = 0.892
Let k2 = 3.1798581
Let k4 = 26

# What are the Logistic Regression Constant (K7) and Coefficient (K8)
# These are a function of the Reliability (and thus SEM) and the Cut
Score

Let k7 = -14.2156
Let k8 = 0.551401

# What are the Bias (k5) and SD Bias(k6)?
# These are aspects of the Bayesian estimates of the prior

Let k5 = 0
Let k6 = 4.083

# THIS COMPLETES THE UNIQUE INPUT FOR EACH MACRO
#How many lines (number of Estimated True Scores)
# 1038044 is 14 repetitions of the 74,146 true scores

Let k3 = 1038044
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Name k1 = 'Reliability'
Name k2 = 'SEM' # Standard Error of Measurement
Name k3 = 'lines' # Number of Lines (number of Estimated True Scores)
Name k4 = 'cut' # Cut Score

Name K5 = 'Bias' # Bias of the Bayesian Estimate (in percentage
points)
Name k6 = 'SDBias' # Standard Deviation of the Bias (in percentage
points)

Name k7 = 'a' # Constant from the Logistic Regression
Name k8 = 'b' # Coefficient from the Logistic Regression

Name k10 = 'belo-cut' # The number for categorization below the
custscore

Name k15 = 'check_no' # [Square Root of([1-'Reliability'])]*9.676
# Where 9.676 is the standard deviation of the 74,146 Observed scores
# in the SPRING 1999 MATH PORTION OF THE HIGH SCHOOL MEAP

Name k25 = 'Const-LgstRegres'
Name k26 = 'Coeff-LgstRegres'
Name k30 = 'RDMord.RELcut'
Name k50 = 'Random_Order'

# C1 is ETS, the Estimated True Scores. These have been calculated
previously
# taking 74,146 observed scores, calculating the deviation score by
subtracting # the average, attenuating using the reliability
coefficient, and then
# adding back the average

Name c2 = 'TM-Code' # Code for whether the True Score is Above the Cut
Score- # TM (True Meets the Standard) or
not (tf)[True Fails to

# Meet the Standard]

Name c3 = 'e-O' # error to add to ETS to get the observed
Name c4 = 'OO' # Origional Observed (before trimming or rounding)
Name c5 = 'obs1' # trim scores below 0 or above 49 to 0 and 49
respectively

Name c18 = 'DcmlPt obs1' # The decimal part of obs1
Name c19 = 'DcmlPt Rndd' # Round the decimal part to 0, 0.5, or 1.0
# Note: each gets about 1/3, producing digit preference distribution

Name c20 = 'obs' # the observed score used in further calculations
(floor

# plus c19 in the formula)

Name c6 = 'OM-Code' # Code for whether the Observed Score is Above the
Cut

# Score- OM (Observed Meets the Standard) or not
# (of)[Observed Fails to Meet the Standard]
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Name c7 = 'T-Prob' # True probability: P(Observed>Cut | ETS, SEM)
# Uses the ETS as point up to which the cumulative

goes
# Taking advantage of the fact that this is equal

to
# P(O<T | Cut, SEM)

Name c8 = 'e-bv-t-P' # error for Bayesian variability to add to true
# Probability (Based on Bias and SDBias)

Name c9 = 'ibe' # initial Bayesian estimate [can be less 0, more
than 1]
Name c10 = 'Prior' # Between 0.005 and 0.995
Name c12 = 'Dat Prob' # Probability of observed score being from a
student # with true > cut based on logistic
regression

# coefficients
Name c13 = 'Posterior'
Name c14 = 'BM-Code' # Code for whether the Posterior is >= 0.5

# BM (Bayesian Meets the Standard) or <0.5
(bf)[True Fails # to Meet the Standard]

Name c15 = 'Result' # Concatenate TM-Code, OM-Code, and BM-Code

Name C22 = 'Results'
Name C23 = 'Result Cnt'
Name c24 = 'Result Pct'

Let k10 = k4 - 0.000001
Let k15 = [SQRT([1-'Reliability'])]*9.676
Let k25 = k7
Let k26 = k8

# Following commands generate the Observed score from the ETS (Estimated
True # Score) in C1

Random 'lines' C3;
Normal 0 'SEM'.

Let c4 = c1 + c3

Code (-100000:0) 0 (49:100000) 49 'OO' c5

Let c18 = c5-FLOOR(c5,0)
Code (-10000:0.333333333333) 0 (0.3333333333334:0.6666666666666) 0.5 &
(0.6666666666667:10000) 1 C18 c19

Let c20 = FLOOR(c5,0)+C19

# Following Commands generate the Priors

CDF C1 c7;
Normal 'cut' 'SEM'.
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Random 'lines' c8;
Normal 'Bias' 'SDBias'.
Let c9 = ('e-bv-t-P'/100)+'T-Prob'
Code (-10000:0.005) 0.005 (0.995:1000) 0.995 'ibe' 'Prior'

# Following commands generate the data probabilities and the posteriors
Note
Note Macro is computing posterior
Note

Let c12 = 1/[1+E()**(-1*['a'+'b'*'obs'])]
Let 'Posterior' = ['Prior'/(1-'Prior')]/(['Prior'/(1-'Prior')] + &
[(1-'Dat Prob')/'Dat Prob'])

# The following lines code the True, Observed, and Bayesian and
# Concatenate them to the result

Code (-100000: k10) "tf" (k4:100000) "TM" C1 c2

# This is just a note to let me see the program is running well
Note
Note Macro has completed TM-Code
Note

Code (-100000: k10) "of" (k4:100000) "OM" 'obs' c6

Code (-100000:0.4999999999) "bf" (0.5:1) "BM" 'Posterior' 'BM-Code'

Concatenate 'TM-Code' 'OM-Code' 'BM-Code' 'Result'

Note The following are the results for
Print k50, k30

Desc c1, c3-c5, c7-c10, c12-c13, c18-c20

Tally 'Result';
Counts;
Percents;
Store c22, c23, c24.

Note THE ABOVE TALLY IS FOR THE FOLLOWING INPUTS
Print K50, K30, k1, k2, k15, k3, k4, k5, k6, k25, k26

ENDMACRO
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APPENDIX C
MACRO FOR LOGISTIC REGRESSION

MTB > Random 1038044 'fouth e';
SUBC> Normal 0.0 3.1798581.
MTB > Let 'L4-89-26' = 'ETS'+'fouth e'
MTB > Code (-1000:0) 0 (49:10000) 49 'L4-89-26' 'L4t8926'
MTB > Describe 'ETS' 'D26' 'fouth e' 'L4-89-26' 'L4t8926'.

MTB > Name c6 = 'EPRO1'
MTB > BLogistic 'D26' = L4t8926;
SUBC> Logit;
SUBC> Eprobability 'EPRO1';
SUBC> Brief 2.
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APPENDIX D
DETAILED FLOWCHART OF RESEARCH PROCESS

Select Range of Variables of Interest:

Characteristics of the Test:
- Cut Score      
- Reliability

Characteristics of the Prior
- Prior Bias     

- SD Bias of Prior Bias

Develop 30 Run Central 
Composite Design (CCD)

Figure 21
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This dissertation explores the proposition that Bayesianism and High

Stakes Test Results can be mutually illuminating. It employs a simple form of

Bayes’s Theorem, assumes Classical Measurement Theory, and uses classical

(as opposed to Bayesian) statistical tools such as Monte Carlo Simulation,

Logistic Regression, and Response Surface Methodology.

Generating Estimated True Scores of approximately 75,000 first time test

takers from the Observed Scores from one administration of an actual High

Stakes Test (Michigan MEAP Mathematics), it was found that a Bayesian

approach could result in a net improvement in classification (meeting standard or

not meeting standard) of between approximately 2-½ % to 5-½ % for a wide

range Accuracy and Consistency of the Bayesian Prior as well as a wide range
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of Test Reliability and Cut Scores. It was found that the factor which has the

most impact was Test Reliability—the less reliable the test, the more a Bayesian

approach improves classification. Thus, this dissertation provides a ‘proof of

concept’ that an intellectual technology for Bayesian reclassification might be

developed to improve the classification of students—and the distribution of high

stakes consequences (graduation, passing to next grade, promotions of

teachers, etc.) which such classifications entail.

Before implementation of a policy using this approach, considerable

research is needed. First, it must be determined if the results hold for a wide

range of distributions of test scores (a task which is part of this research

programme). Second, it must be determined if students who might be

reclassified will have better education outcomes. While it must be determined

under what condition such a Bayesian reclassification would be politically

acceptable, at minimum, it is hoped that this dissertation will contribute to

increasing “Psychometric Modesty” at a time when profound societal rewards

and punishments are associated with High Stakes Tests.



205

AUTOBIOGRAPHICAL STATEMENT
DAVID ARTHUR FLUHARTY

David Fluharty was born on February 28, 1951. An only child, his youth was
spent in New Cumberland, Weirton, and Follansbee which are in what was then a
thriving steel mill area of West Virginia’s northern panhandle. His father, Ralph Fluharty
(1917-1979), was a steel worker (roll turner/lathe operator/tool maker) and his mother,
Grace Elaine Martin Fluharty (1915-1977) was a stay at home mother and later a sales
clerk (although her position would now be called assistant manager of a woman’s
boutique). After attending local Catholic grade schools, he went to St. Joseph
Preparatory Seminary in Vienna, West Virginia, a boarding school. His first two years at
Wheeling College (now Wheeling Jesuit University) were also spent studying to be a
priest. His generation was the first to attend college. He spent three summers during
college as a laborer in Weirton Steel, including the coke plant, mason gang, and the hot
mill (where his last position was Second Sweeper).

He completed his BA in Political Science at in three years Wheeling in 1972, the
year he became an agnostic (returning to Catholicism in 1999). He went on to the
University of Chicago, first in the Committee on International Relations (MA completed in
1978) and then the Graduate School of Business (MBA in Business Economics and
Finance in 1975). It was at Chicago where his deep interest in statistics developed from
efforts to understand quantitative models in economics, and international & nuclear
strategy. He met his future wife, Mary Reiter of Pittsburgh, in the television room of their
dormitory, International House. He held summer internships in the Chicago Office of
Department of Housing and Urban Development and the Washington DC office of
Senator Jennings Randolph (D-WV).

After spending one year helping to create capital market distortions as a Bond
Guarantee Analyst at Maritime Administration in the US Department of Commerce in
Washington DC, Fluharty joined Ford Motor Company in Dearborn Michigan as a
Financial Analyst in 1977. Positions in Car Product Development Controller’s Office
included the path breaking “Team Taurus.” In 1978 he married Mary Reiter. One day at
Ford he saw a sign asking “Are you interested in statistics?” This led to membership in
Ford’s Statistical Methods Council, exposure to W. Edwards Deming, and a Graduate
Certificate in Applied Statistics from Oakland University. In 1985 he moved to a Ford
statistics group in Ford. In 1986 he and Mary became the proud parents of Margaret
Rose Elaine Fluharty-Reiter, who would attend Waldorf nursery school, a progressive
Kindergarten, and a Montessori elementary school. In 1988 Fluharty left Ford for what
would become Alcoa Fujikura, Ltd. (AFL), where in worked as an individual contributor
and manager in quality, warranty, and finance.

In 1995 Margaret died unexpectedly. Fluharty began studies in Education at
Wayne State that year. In 2001 his position was eliminated at AFL. He spent two years
at Continental Teves in Auburn Hills, Michigan. In 2004 he worked for two months at
the American Statistical Association. In 2004 he joined Remy International in Anderson,
Indiana, where he now is a Senior Statistical Analyst.

Fluharty participated in the Internship in Ignatian Spirituality at Manressa in
Bloomfield Hills, Michigan. He has served in a variety of volunteer capacities in the
statistics profession. He volunteered for the Jubilee 2000 (developing nation) debt relief
effort. His biography is in Who’s Who in America. His hobbies are reading, visiting art
and other museums, and exploring the connection between ideas & action. He and his
wife Mary enjoy dining, watching movies & the History Channel.


