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Chapter 1 

Introduction 

When conducting a statistical test the initial risk that must be considered is a 

Type I error, also known as a false positive. It occurs when “rejecting a null hypothesis 

when it is true” (Hinkle, Wiersma, & Jurs, 2003, p. 178). The Type I error rate is set by 

nominal alpha, assuming all underlying conditions of the statistic are met. For example, 

if nominal α = 0.05, then this indicates that the threshold for what constitutes a rare 

event is set to the odds of less than or equal to 1 in 20, and the probability of a false 

positive is equal to 5%. 

For example, classical parametric statistics – such as the Z, t and F – are based 

on an underlying theory of probability that equates nominal alpha with the Type I error 

rate. Therefore, under the truth of the null hypothesis (i.e., no treatment effect), and 

when the underlying assumptions (i.e., independence, homoscedasticity & normality) 

are met, a nominal alpha of 0.05 will result in a 5% rejection rate of the null hypothesis. 

Consider a selection of random numbers from the Gaussian distribution. 

Suppose they are subsequently randomly assigned into two groups, and the parametric 

Student’s t test is conducted on their respective means. Over the course of many 

replications of this experiment, the long run average rejection rate, even though by 

definition the random values do not model the presence of a treatment, will be equal to 

the value set as nominal alpha. 

The paradigm of taking the probability of the long run average as the risk for a 

single hypothesis test is based on the Frequentist approach to statistics. “Neyman 

throughout his work emphasizes the importance of a probabilistic model of the system 
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under study and describes frequentist statistics as modelling the phenomenon of the 

stability of relative frequencies of results of repeated ‘trials’” (Mayo & Cox, 2006, p. 79). 

In contradistinction, “Bayesian statistics is a term applied to the body of inferential 

techniques that uses Bayes' theorem to combine observation data with personalistic or 

subjective beliefs” (Press, 2005, p. 1), and therefore, Type I error rates are 

conceptualized slightly differently. (See Sawilowsky, 2003, for a comparison of both 

paradigms, along with the Fisherian approach to statistics.) 

The Frequentist risk represented by the Type I error only applies if a single 

statistical test is conducted on the data set. If multiple analyses are conducted the Type 

I error rate will increase above nominal alpha. This is known as experiment-wise Type I 

error inflation: the “Experimentwise error rate (αE) is the probability of making a Type I 

error rate for the set of all possible comparisons” (Hinkle, Wiersma, & Jurs, 2003, p. 

372). Statisticians have considered this problem since the second half of the 20th 

century and have proposed a variety of solution strategies to handle Type I error 

inflation, particularly for statistical approaches that invoke multiple procedures. 

For example, the question frequently arises as to the reason for caution in 

conducting both a parametric and a nonparametric test on the same data, and failing to 

reject the null hypothesis for whichever results are favored. The Type I error inflation 

makes this approach inappropriate. A solution to this problem is called the maximum 

test, where critical values are obtained based on conducting both types of tests. See 

Algina, Blair, and Coombs (1995) and Maggio (2012) for some solutions. This strategy, 

however, requires special tables of critical values. 
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According to some viewpoints, there are also statistical layouts that permit a 

step-down analysis. An example is following a multivariate test (e.g., MANOVA or 

MANCOVA) with univariate tests. Consider a Hotellings’ T2 which conceptually is an 

extension of the test of difference in means in the Student’s t test to the multivariate 

case, which is the difference in group centroids. A question that frequently arises 

following a significant T2 is if one or the other dependent variable was the greater 

contributor.  

Suppose both a test of reading and mathematics achievement were given 

following an intervention, and the T2 test of differences in means between females and 

males was statistically significant. The step-down univariate test (i.e., Student’s t test) 

on reading by gender, and mathematics by gender, would then be conducted. The 

statistical literature is not settled on the appropriateness of this approach. The general 

consensus is if the multivariate test was conducted only to maximize power there is no 

reason why step-down tests shouldn’t be conducted (other than the inflation of Type I 

errors). However, if the T2 was conducted because of a multivariate hypothesis with 

intertwined dependent variables (e.g., self-esteem & self-worth), conducting step-down 

tests and the concern with experiment-wise Type I error inflation vanishes.  

However, there are other layouts that according to all viewpoints require multiple 

statistical tests. The classical example of this is the one-way analysis of variance. The 

omnibus F test can be used to determine if there is a difference in means somewhere 

within the K ≥ 3 groups. Either a priori or post hoc comparisons must be conducted, 

however, in order to determine precisely where the difference(s) in means occurred. It is 

recognized that conducting multiple tests in this application increases the experiment-
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wise Type I error rate. In the literature review to follow in Chapter 2, some a priori 

methods that attempt to prevent this will be discussed. More relevant to the current 

study are post hoc methods. 

 

Post Hoc Tests: A Resolution to the Inflation Problem 

Wilcox (1996) described the most extreme post hoc solution to experiment-wise 

Type I error inflation: 

 

The Bonferroni procedure, sometimes called Dunn’s Test, provides a 
simple method of performing two or more tests such that the 
experimentwise Type I error probability will not exceed α. If you want 
experimentwise Type I error probability to be at most α, you simply 
perform paired t-tests, each at the αb = α/C level of significance, where C 
is the total number of comparisons you plan to perform. (p. 279) 
 
 

The Bonferroni-Dunn procedure divides alpha by the number of tests to be 

conducted, to ensure that after all hypothesis tests are computed the total Type I error 

rate does not exceed nominal α. This method is guaranteed to contain the Type I error 

rate, but it also guarantees loss of statistical power, because as α decreases, β 

increases; and as β increases, power decreases (Hinkle, Wiersma, & Jurs, 2003, p. 

300). All other multiple comparison procedures are a compromise between the 

Bonferroni and making no adjustments to control Type I error inflations. 

Several procedures have been developed to correct for experiment-wise Type I 

error rates, especially between the 1940s and 1960s, that are less extreme than the 

Bonferonni-Dunn approach (e.g., Dunn’s, Dunnet’s, Fisher’s, Scheffé’s, Student-

Newman-Keuls’, & Tukey’s tests; see Kirk, 2013, for a comprehensive review). This 
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topic attracted the attention of researchers worldwide, culminating in the first 

International Conference on Multiple Comparisons that was held in 1996 in Tel Aviv 

(http://www.mcp-conference.org/1996/).  

At the conference, Type I error inflations were shown to be pertinent to a variety 

of research designs and statistical layouts, including the following: interim analysis, 

sequential analysis, adaptive testing, multivariate contexts, closed stepwise procedures, 

union-intersection procedures, logically related hypothesis, wavelets, resampling, 

discrete tests, order statistics, semi-Bayesian methods, Bayesian methods, confidence 

intervals, inverse problems, simultaneous confidence intervals, global maximizers, 

multinomial proportions, cross-sectional designs, saturated designs, pre-clinical trials, 

clinical trials, safety assessment, dose finding, trend tests, multiple endpoint studies, 

trait loci, transformations, step-up tests, and the Solomon four-group design. The 8th 

International conference was held in the summer of 2013 (http://www.mcp-

conference.org/2013/index.php). 

It is clear from the plethora of research designs considered at the International 

Conference that the inflation of Type I errors should be considered in all research 

designs, and should never be summarily dismissed. For example, an application of 

interest not previously considered is the impact of nesting designs on Type I errors. 
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Nesting 

Hierarchical linear modeling (HLM), which is based on testing nested effects, is a 

popular statistical approach to school-based research. Kreft and De Leeuw (1998) 

stated “Hierarchical data structures are very common in the social and behavioral 

sciences… Once you know that hierarchies exist, you see them everywhere” (p. 1). 

Kanji (1999) provided a definition of a nested or hierarchical classification as 

follows: 

 

In the case of a nested classification, the levels of factor B will be said to 
be nested with the levels of factor A if any level of B occurs with only a 
single level of A. This means that if A has p levels, then the q levels of B 
will be grouped into p mutually exclusive and exhaustive groups, such that 
the ith group of levels of A is qi, i.e. we consider the case where there are 
∑iqi levels of B. (p. 128) 
 

 

Kanji provided a nested example from education with two factors, which were three 

teachers each per four schools. The teachers represented level one of the nest, with 

their school being level two. Two F tests were conducted. One was necessary to 

determine teacher differences, whereas the other was carried out to determine school 

differences. 

Winer (1971) provided another example of nested factors. Consider a drug trial in 

which one level of independent variable is the assignment of one of two different drugs. 

Drug 1 is administered at one group of hospitals, while Drug 2 is administered in 

another group of hospitals. Hence, Hospitals constitute the second level of the nest. 

Drug 1 and Drug 2 contribute unique effects within the group of Hospitals. Winer (1971) 

explained, “Effects which are restricted to a single level of a factor are said to be nested 
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within that factor” (p. 360). The effects of the hospitals were also nested, because they 

appeared beneath the Drugs factor. Patients at Hospitals 1, 2 and 3 received Drug 1, 

while patients at Hospitals 4, 5 and 6 received Drug 2. In this case, the classical A×B 

ANOVA layout is inappropriate, because there is no way to construct the interaction of 

Hospital by Drug. For that to have occurred, the patients at each hospital needed to 

have received both drugs. (See Table 1.) Winer (1971) concluded by emphasizing the 

substantial limitation of nested designs in that they do not permit the testing of an 

interaction effect. 

 

Table 1 
 
Winer’s (1971, p. 359) Hierarchical/Nested Design Example 

Drug 1 Drug 2 

Hospital 1 Hospital 2 Hospital 3 Hospital 4 Hospital 5 Hospital 6 

n n n n n n 

 

 

To ameliorate this limitation, Winer (1971) suggested a two-factor factorial 

experiment, which is superior to a nested design because the interaction can be 

measured. This design is illustrated in Table 2. Winer noted this design is not always a 

viable alternative, due to the requirement of multiple categories within each factor 

sometimes being studied as relevant factors. As long as this is not the case, however, 

Winer indicated it is the preferred option when an interaction between factors is of 

interest and should be tested. 
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Table 2 
 
Winer’s (1971, p. 361) Two-Factor Factorial Experiment Alternative 

 Hospital 1 Hospital 2 Hospital 3 Hospital 4 Hospital 5 Hospital 6 

Drug 1 
2
n   

2
n  

2
n  

2
n  

2
n  

2
n  

Drug 2 
2
n  

2
n  

2
n  

2
n  

2
n  

2
n  

 
 

Winer (1971) also addressed the possibility of partially-nested designs. The 

example given was different teaching methods, each taught at different schools (p. 

365). Limited to this layout, it is a two-factor factorial experiment. However, if the 

schools were located in different cities, the layout changes to a partially hierarchical 

design. The partially-nested design “enables the researcher to eliminate systematic 

sources of variation associated with differences between cities and differences between 

schools within cities from the experimental error” (p. 365). There is a cost to pay for 

invoking the partially-nested layout: “reduced degrees of freedom for experimental error” 

(p. 365), which reduces the power of the test. 

Winer (1971) also expanded “computational procedures for nested factors” (p. 

464) for the three factor layout. The same drawback appears with this design in that the 

nesting sacrifices degrees of freedom. Winer noted with regard to the resulting F ratio, 

that if the “denominator has relatively few degrees of freedom, the power of the test will 

be low” (p. 466). 

Kreft and De Leeuw (1998) stated that hierarchical modeling tends to address 

research questions that lack independence and other experimental conditions, which 
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makes it incompatible with ANCOVA (p. 5). Similarly, Kennedy and Bush (1985) noted 

“Interaction is not a meaningful consideration when one variable is nested within 

another” (p. 52). For an interaction effect to be measured, all factors in all levels would 

need to contain all factors of all other levels. However, nesting is advantageous in order 

to control for unique effects of a specific level of a nest on another level (e.g., schools 

on curriculum). 

 

Experiment-wise Type I Error and Nesting 

There are also more sophisticated multi-level and longitudinal models based on 

these basic layouts (Heck, Thomas, & Tabata, 2010). However, there has been little 

discussion in the literature regarding the impact on the inflation of experiment-wise Type 

I error rates due to the hierarchical testing of treatment effects. For example, Kanji 

(1999) did not address the issue of conducting multiple F tests. If each test is set at α = 

0.05, then in reality there will be an approximate experiment-wise Type I error rate of 

0.10. Similarly, Winer’s (1971) presentation of the different types of nested designs (2 

Factors, Partial, and 3 or more Factors) was not accompanied by a discussion on the 

experiment-wise Type I error rate. 

Marascuillo and Serlin (1988) discussed how the risk of Type I errors are 

distributed from nested variables.  

 

In a three-factor design with the inclusion of each of the two-factor 
interactions and the one three-factor interaction, the total risk of a type I 
error is 

 
αT ≤ αA + αB + αC + αAB + αAC + αBC + αABC. 
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If each source of variation is tested at .05, then αT ≤ 0.35. If a model is 
used where some factors are nested in others, then we maintain an 
overall αT ≤ 0.35 by apportioning the risk of a Type I error appropriately. 
(p. 557) 
 

 

(Note that α throughout their equation is a misnomer; Marascuillo & Serlin, 1988, were 

referencing the experiment-wise Type I error rate, which they referred to as the “overall” 

(p. 557) false positive rate. Hence, they should have used symbols reflecting Type I 

error instead of alpha.) They noted the summation of alpha’s (0.05), when multiplied by 

the number of effects (7) produces the ceiling of 0.35, the experiment-wise Type I error 

rate. 

 

Purpose of the Study 

The purpose of the study is to use Monte Carlo methods via Fortran to determine 

if there is an experiment-wise Type I error rate inflation, and if so, what is its magnitude, 

when testing nested effects common to educational and psychological research. Given 

Marascuillo and Serlin’s (1988) explication of experiment-wise Type I error inflation, the 

question arises whether nested designs can be used without corrections for this 

problem. 

 

Research Hypothesis 

 It is hypothesized that nested designs, despite their currently increasing 

popularity, are vulnerable to experiment-wise Type I error inflation. If this is found to be 

the case, a solution strategy will be suggested to control the inflation. 

 



11 
!

Operational Definitions 

Type I error: A Type I error occurs when “rejecting a null hypothesis when it is 

true” (Hinkle, Wiersma, & Jurs, 2003, p. 178). 

Type I error rate: The number of rejections (i.e., false positives) per number of 

statistical tests conducted. For example, the Type I error rate under the truth of the null 

hypothesis when nominal α = 0.05 and all underlying conditions are met is expected to 

be 1 out of 20, or 5%. 

Experiment-wise Type I error rate: “Experimentwise error rate (αE) is the 

probability of making a Type I error rate for the set of all possible comparisons” (Hinkle, 

Wiersma, & Jurs, 2003, p. 372). 

Nested designs: “Effects which are restricted to a single level of a factor are said 

to be nested within that factor” (Winer, 1971, p. 360). 

Hierarchical models: “A hierarchy consists of lower-level observations nested 

within higher level(s)” (Kreft & De Leeuw, 1998, p. 1). 

Bonferroni adjustment: Based on the Bonferroni inequality, Dunn (1961) 

developed an approach to ensure the experiment-wise Type I error rate cannot rise 

above nominal alpha. It is achieved by dividing the nominal alpha chosen by the number 

of tests to be conducted. For example, if three tests are to be conducted, each test 

would have its alpha level set to =
0.05 0.016
3

.!
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Limitations 

 The design used in this study will be limited to students’ scores obtained in a 

single nested layout of three teachers per school with four schools. Data will be 

randomly selected and assigned from a selection of theoretical mathematical 

distributions and selected real datasets. Moreover, only sample sizes and alpha levels 

common to social and behavioral sciences will be modeled. Therefore, the results of this 

study may not be generalizable to other layouts and study conditions. 
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Chapter 2 

Review of the Literature 

Saville (1990) argued that Type II errors are of greater concern than Type I 

errors. The reason is due to the consideration of practical data analysis versus purely 

theoretical. In theory, hypothesis tests begin with the null assumption that µ1 = µ2 · · · = 

µk, for k groups. However, Saville (1990) stated that in practice, the means rarely ever 

end up exactly the same. Chance fluctuations in group means can therefore lead 

researchers to finding false negatives, in an attempt to control for this. 

Therefore, Saville (1990) recommended conducting multiple t tests, concluding 

that “the multiple comparison controversy is resolved if the procedures are thought of as 

hypothesis generators rather than as methods for simultaneous generation and testing” 

(p. 179). However, Bradley (1969) gave limits to the extent to which an inflated Type I 

error is tolerable, which he called the liberal definition of robustness. It is defined as 

±0.5α (i.e., 0.025 – 0.075, when α is set to 0.05). In contrast to Saville (1990), most 

authors are of the opinion that Type I error inflation is of extreme importance. 

 

Types of Type I Error 

 There are two domains in which the issue of experiment-wise Type I error rate 

inflation can be an issue: sequential tests and parallel tests.  

 

Sequential (or Serial) tests. 

Sequential tests occur in separate phases. For example, there is the 

recommendation to test for underlying assumptions (homoscedasticity via Levine’s test 

and via Kolmogorov-Smirnov’s test), and only on successfully rejecting both proceeding 
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to conduct a statistical test of effects (e.g., t test). This strategy was recommended in 

many statistical packages (e.g., SAS, 1990, p. 25; SPSS, 1993, p. 254-255; SYSTAT, 

1990, p. 487). However, Sawilowsky (2002) noted “There is a serious problem with this 

approach that is universally overlooked. The sequential nature of testing for 

homogeneity of variance as a condition of conducting the independent samples t test 

leads to an inflation of experiment-wise Type I errors” (p. 466). Sawilowsky (2002) 

conducted a Monte Carlo study that demonstrated the experiment-wise Type I error rate 

inflated to almost twice alpha. A possible solution to this is to avoid using a parametric 

test that requires testing for underlying assumptions when the data are not known to be 

normally distributed and homogeneous. 

In another example, Walton-Braver and Braver (1988) developed a five-test 

sequence for the analysis of the Solomon four-group design. Sawilowsky and Markman 

(1988, 1990a) argued the experiment-wise Type I error for the fifth and final test is 

“dependent upon the Type II error properties of the preliminary four tests” (p. 178). They 

concluded regarding the serial testing method that “its limitations must be investigated, 

and we advise using the technique with caution” (p. 178). 

Braver and Walton-Braver (1990) responded by reducing their method from a five 

test sequence to a four test sequence. Whereas this will somewhat alleviate the 

experiment-wise Type I error rate, as noted by Sawilowsky and Markman’s (1990b) 

reply, the issue remained unresolved. 

Eventually the matter was formally studied in Sawilowsky, Kelley, Blair, and 

Markman (1994). They noted that Walton-Braver and Braver (1988) had claimed that “in 

sequential tests, it is difficult to specify a priori the experiment-wise Type I error rate 
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over the entire sequence” (p. 153). Sawilowsky et al. (1994) responded: “Although it 

may be difficult to specify a priori the Type I error rate at a particular step in the 

sequence, it is straightforward to determine empirically the actual Type I error rate 

through Monte Carlo methods, and therefore these errors should not be ignored” (p. 

366).  They found the experiment-wise Type I error rate, over the five test sequence, 

inflated to 0.138 when nominal alpha was set to 0.05. 

 

Parallel tests. 

Parallel tests occur when multiple tests are conducted at the same time. For 

example, in ANOVA, multiple main effects and interactions can all be of interest. There 

is debate whether to start with the main effects or interactions, and whether to stop or 

continue after finding significance (see, e.g., Sawilowsky, 2007a, ch. 14). Regardless of 

the method chosen, all tests are conducted simultaneously. For example, with three 

main effects, the following seven combinations can be tested for significance: A × B × 

C, A × B, A × C, B × C, A, B, and C. 

There is a commonly held belief by researchers that ANOVA provides weak 

protection against the inflation of Type I error rates when conducting multiple tests. This 

is due to the researcher being genuinely interested in multiple hypotheses. It is believed 

that this interest adequately negates the effect of conducting repeated measures while 

utilizing the Frequentist approach. It is argued that ANOVA is in contrast to processes 

such as stepwise regression, in which the researcher does not have prior suspicion or 

even interest in the various hypotheses being tested. 
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For example, Kromrey and Dickenson (1995) stated, 

 

in a two-factor ANOVA, three null hypotheses are tested (one for each 
main effect and one for the interaction effect), while in a three-factor 
analysis, seven null hypotheses are tested (three main effects, three first-
order interactions, and one second-order interaction), and in a four-factor 
analysis, fifteen null hypotheses are tested. The effects of multiple 
testing… in factorial ANOVA has not been undertaken, despite the fact 
that the problem has been recognized for more than 30 years. (p. 51-52) 
 

 

Kromrey and Dickenson (1995) conducted a Monte Carlo simulation in which the 

number of factors (2-4), pattern of effects (null and/or non-null), effect size (small – 

large), and sample size (5, 10, & 20) were modeled. The simulation was conducted with 

5,000 repetitions per experimental condition. In order to safeguard against rival 

hypotheses affecting the results, the ANOVA F tests were conducted on data sampled 

from a theoretical normal distribution, thus ensuring internal validity. 

Conditioned on a significant omnibus F test, with the two-factor model, the 

experiment-wise Type I error rate for the null effects were 0.06. With the three-factor 

model, it was as high as 0.16, and with four factors, it arose to 0.35 for the null effects. 

These results demonstrated that the issue of experiment-wise Type I error rate applies 

to the parallel scenario, even in the presence of a known significant non-null effect. (In 

other words, the weak protection is ineffective in controlling experiment-wise Type I 

error rate inflation. 

Kromrey and Dickenson (1995) resolved this problem by applying the Bonferroni 

post hoc procedure, as well as other modifications (i.e., Holm and Hochberg). Each 

hypothesis test was divided by the overall desired alpha level, which prevented 
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unwanted inflation of the experiment-wise Type I error rate. However, a Google Scholar 

search indicated that in the 18 years since Kromrey and Dickenson (1995) was 

published, it has only been cited only 15 times of which 12 were from the applied 

literature. Based on this, one can conclude the study has had almost no impact on 

statistical practice. Being interested in multiple effects does not eliminate the inflation of 

Type I error when conducting multiple tests. 

 

Classical Solutions to Multiple Comparison Inflations 

 There are a number of classical ways to control experiment-wise Type I errors 

that improve on the power loss from the Bonferroni-Dunn adjustment, as well as more 

modern, computer-based approaches. For example, regarding multiple t tests in the 

context of one-way ANOVA, SPSS (2013, v. 21) provides the following techniques when 

the underlying assumption of homogeneous variances condition holds: 

 

• LSD. Uses t tests to perform all pairwise comparisons between 

group means. No adjustment is made to the error rate for multiple 

comparisons. 

• Šídák (sometimes known as Holm-Šídák). Pairwise multiple 

comparison test based on a t statistic. Šídák adjusts the 

significance level for multiple comparisons and provides tighter 

bounds than Bonferroni.  

• Scheffé. Performs simultaneous joint pairwise comparisons for all 

possible pairwise combinations of means. Uses the F sampling 
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distribution. Can be used to examine all possible linear 

combinations of group means, not just pairwise comparisons.  

• R-E-G-W F. Ryan-Einot-Gabriel-Welsch multiple stepdown 

procedure based on an F test.  

• R-E-G-W Q. Ryan-Einot-Gabriel-Welsch multiple stepdown 

procedure based on the Studentized range.  

• S-N-K (Student-Newman-Keuls). Makes all pairwise comparisons 

between means using the Studentized range distribution. With 

equal sample sizes, it also compares pairs of means within 

homogeneous subsets, using a stepwise procedure. Means are 

ordered from highest to lowest, and extreme differences are tested 

first.  

• Tukey. Uses the Studentized range statistic to make all of the 

pairwise comparisons between groups. Sets the experimentwise 

error rate at the error rate for the collection for all pairwise 

comparisons.  

• Tukey’s b. Uses the Studentized range distribution to make 

pairwise comparisons between groups. The critical value is the 

average of the corresponding value for the Tukey’s honestly 

significant difference test and the Student-Newman-Keuls.  

• Duncan. Makes pairwise comparisons using a stepwise order of 

comparisons identical to the order used by the Student-Newman-

Keuls test, but sets a protection level for the error rate for the 
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collection of tests, rather than an error rate for individual tests. Uses 

the Studentized range statistic.  

• Hochberg's GT2. Multiple comparison and range test that uses the 

Studentized maximum modulus. Similar to Tukey’s honestly 

significant difference test.  

• Gabriel. Pairwise comparison test that used the Studentized 

maximum modulus and is generally more powerful than Hochberg's 

GT2 when the cell sizes are unequal. Gabriel’s test may become 

liberal when the cell sizes vary greatly.  

• Waller-Duncan. Multiple comparison test based on a t statistic; 

uses a Bayesian approach.  

• Dunnett. Pairwise multiple comparison t test that compares a set of 

treatments against a single control mean. The last category is the 

default control category. Alternatively, you can choose the first 

category. 2-sided tests that the mean at any level (except the 

control category) of the factor is not equal to that of the control 

category. < Control tests if the mean at any level of the factor is 

smaller than that of the control category. > Control tests if the mean 

at any level of the factor is greater than that of the control category. 

(SPSS, help/index.jsp?topic=/com.ibm.spss.statistics.help/ 

idh_onew_post.htm) 
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When homogeneity of variance cannot be assumed, SPSS offers the following: 

 

• Tamhane’s T2. Conservative pairwise comparisons test based on a 

t test. This test is appropriate when the variances are unequal.  

• Dunnett’s T3. Pairwise comparison test based on the Studentized 

maximum modulus. This test is appropriate when the variances are 

unequal.  

• Games-Howell. Pairwise comparison test that is sometimes liberal. 

This test is appropriate when the variances are unequal.  

• Dunnett’s C. Pairwise comparison test based on the Studentized 

range. This test is appropriate when the variances are unequal. 

(SPSS, help/index.jsp?topic=/com.ibm.spss.statistics.help/ 

idh_onew_post.htm) 

 

Calculating and Estimating Experiment-wise Type I Error Rates 

In terms of the false positive rate, there are two main ways to estimate the Type I 

error rate based on the number of tests being conducted. Bush and Kennedy (1985) 

defined the first approach as 1 np− , in which “p denotes the probability in a single 

instance” of “not committing an alpha error” (p. 28). Hence, if α is set to 0.05, p = 0.95. 

Bush and Kennedy (1985, p. 78) illustrated this with the example of three tests 

conducted on the same data set. The experiment-wise Type I error rate is 

− = −

=

31 .95 1 0.8574
0.1426

. 
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The second approach is a crude estimation technique based on multiplying 

nominal alpha by the number of tests conducted. This approach, described by 

Marascuilo and Serlin (1988, p. 557), would produce an estimated experiment-wise 

Type I error rate of 3 × 0.05 = 0.15. Note this result is close to the exact value computed 

above. However, this estimation procedure becomes unusable as the number of tests 

conducted increases. Indeed, if 21 tests were computed on the same data set, this 

procedure would produce an estimated experiment-wise Type I error rate of 1.05, which 

is above the ceiling for p.  

 Table 3 contains a comparison of the two approaches for projecting the 

experiment-wise Type I error rate with nominal α set to 0.05 for one to 100 multiple tests 

on the same data set. The fourth column shows the inefficiency (Delta = M&S – K&B) of 

the Marascuilo and Serlin estimation procedure, which increases as the number of tests 

conducted increases. 

 

Table 3 
 
Estimated and calculated Type I error rates 

# Tests M&S K&B Delta 

1 0.0500 0.0500 0.0000 
2 0.1000 0.0975 0.0025 
3 0.1500 0.1426 0.0074 
4 0.2000 0.1855 0.0145 
5 0.2500 0.2262 0.0238 
6 0.3000 0.2649 0.0351 
7 0.3500 0.3017 0.0483 

!

!

!
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Table 3 continued 
 
Estimated and calculated Type I error rates 

# Tests M&S K&B Delta 

8 0.4000 0.3366 0.0634 
9 0.4500 0.3698 0.0802 

10 0.5000 0.4013 0.0987 
11 0.5500 0.4312 0.1188 
12 0.6000 0.4596 0.1404 
13 0.6500 0.4867 0.1633 
14 0.7000 0.5123 0.1877 
15 0.7500 0.5367 0.2133 
16 0.8000 0.5599 0.2401 
17 0.8500 0.5819 0.2681 
18 0.9000 0.6028 0.2972 
19 0.9500 0.6226 0.3274 
20 1.0000 0.6415 0.3585 
21 1.0500 0.6594 0.3906 
22 1.1000 0.6765 0.4235 
23 1.1500 0.6926 0.4574 
24 1.2000 0.7080 0.4920 
25 1.2500 0.7226 0.5274 
26 1.3000 0.7365 0.5635 
27 1.3500 0.7497 0.6003 
28 1.4000 0.7622 0.6378 
29 1.4500 0.7741 0.6759 
30 1.5000 0.7854 0.7146 
31 1.5500 0.7961 0.7539 
32 1.6000 0.8063 0.7937 
33 1.6500 0.8160 0.8340 
34 1.7000 0.8252 0.8748 
35 1.7500 0.8339 0.9161 
36 1.8000 0.8422 0.9578 
37 1.8500 0.8501 0.9999 
38 1.9000 0.8576 1.0424 
39 1.9500 0.8647 1.0853 
40 2.0000 0.8715 1.1285 
41 2.0500 0.8779 1.1721 
42 2.1000 0.8840 1.2160 
43 2.1500 0.8898 1.2602 
44 2.2000 0.8953 1.3047 
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Table 3 continued 
 
Estimated and calculated Type I error rates 

# Tests M&S K&B Delta 

45 2.2500 0.9006 1.3494 
46 2.3000 0.9055 1.3945 
47 2.3500 0.9103 1.4397 
48 2.4000 0.9147 1.4853 
49 2.4500 0.9190 1.5310 
50 2.5000 0.9231 1.5769 
51 2.5500 0.9269 1.6231 
52 2.6000 0.9306 1.6694 
53 2.6500 0.9340 1.7160 
54 2.7000 0.9373 1.7627 
55 2.7500 0.9405 1.8095 
56 2.8000 0.9434 1.8566 
57 2.8500 0.9463 1.9037 
58 2.9000 0.9490 1.9510 
59 2.9500 0.9515 1.9985 
60 3.0000 0.9539 2.0461 
61 3.0500 0.9562 2.0938 
62 3.1000 0.9584 2.1416 
63 3.1500 0.9605 2.1895 
64 3.2000 0.9625 2.2375 
65 3.2500 0.9644 2.2856 
66 3.3000 0.9661 2.3339 
67 3.3500 0.9678 2.3822 
68 3.4000 0.9694 2.4306 
69 3.4500 0.9710 2.4790 
70 3.5000 0.9724 2.5276 
71 3.5500 0.9738 2.5762 
72 3.6000 0.9751 2.6249 
73 3.6500 0.9764 2.6736 
74 3.7000 0.9775 2.7225 
75 3.7500 0.9787 2.7713 
76 3.8000 0.9797 2.8203 
77 3.8500 0.9807 2.8693 
78 3.9000 0.9817 2.9183 
79 3.9500 0.9826 2.9674 
80 4.0000 0.9835 3.0165 
81 4.0500 0.9843 3.0657 
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Table 3 continued 
 
Estimated and calculated Type I error rates 

# Tests M&S K&B Delta 

82 4.1000 0.9851 3.1149 
83 4.1500 0.9858 3.1642 
84 4.2000 0.9865 3.2135 
85 4.2500 0.9872 3.2628 
86 4.3000 0.9879 3.3121 
87 4.3500 0.9885 3.3615 
88 4.4000 0.9890 3.4110 
89 4.4500 0.9896 3.4604 
90 4.5000 0.9901 3.5099 
91 4.5500 0.9906 3.5594 
92 4.6000 0.9911 3.6089 
93 4.6500 0.9915 3.6585 
94 4.7000 0.9919 3.7081 
95 4.7500 0.9923 3.7577 
96 4.8000 0.9927 3.8073 
97 4.8500 0.9931 3.8569 
98 4.9000 0.9934 3.9066 
99 4.9500 0.9938 3.9562 

100 5.0000 0.9941 4.0059 

 
Notes: M&S = Marascuilo and Serlin (1988), K&B = Kennedy and Bush (1985), Delta = 

M&S – K&B. 

 

Nested Designs 

As mentioned above, Kanji (1999) provided an example of the application of the 

ANOVA F test for a nested design. The example is repeated here both for explication of 

the calculations and to provide a worked example that will be used to determine the 

accuracy of the Fortran coding to be developed in this study. In the example, there are 

four schools with three teachers nested within each school, with the test scores as 

presented in Table 4. 
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Kanji (1999) noted the residual, A School factor, and B Teacher nest sums of 

squares, are respectively 

( )22
E ijk ijo

i j k

S Y Y= −∑ ∑ ∑ , 

( )22
00 000S i i

i
S n Y Y= −∑ , and 

( )22
0 00T ij ij i

i j
S n Y Y= −∑ ∑ , 

where E is the residual, S is the School, T is the Teacher, the test is HA: αi = 0 for all i, 

and the test for HB: βij = 0 for all i, j. Supplying the appropriate calculations to the 

ANOVA table yields Table 5. 

With df = 8, 60, the critical value for the nominal α = 0.05 is 2.10. Because 1.46 < 

2.10, the nested effect of differences by Teachers is not statistically significant. 

However, with df = 3, 8, the critical value is 4.07. Because 6.47 > 4.07, the difference 

between Schools are statistically significant. Note that in this case the test for nested 

effects was unnecessary. Nevertheless, conducting this test will add to the experiment-

wise Type I error rate.  
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Table 4 
 
Nested design example data from Kanji (1999, p. 129) 

 

 
  Schools    

I II III IV 

Teacher Teacher Teacher Teacher 

1 2 3 1 2 3 1 2 3 1 2 3 

44 39 39 51 48 44 46 45 43 42 45 39 
41 37 36 49 43 43 43 40 41 39 40 38 
39 35 33 45 42 42 41 38 39 38 37 35 
36 35 31 44 40 39 40 38 37 36 37 35 
35 34 28 40 37 37 36 35 34 34 32 35 
32 30 26 40 34 36 34 34 33 31 32 29 

TT 227 210 193 269 244 241 240 230 227 220 223 211 

TX  37.8 35.0 32.17 44.83 40.67 40.16 40.0 38.33 37.83 36.67 37.17 35.17 

ST 630 754 679 654 

SX  35.00 41.89 38.72 36.33 

 
Notes: TT = Teacher total, ST = School total, Grand mean School total = 2,735. 

 

Table 5 
 
Data from the Kanji (1999, p. 130) ANOVA table 

 
df SS Mean Square F 

Schools 3 493.60 164.53 6.47 
Teachers within School 8 203.55 25.44 1.46 
Pupils within Teachers 60 1047.84 17.46  

Total 71 1744.99  
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 Chapter 3  

Methodology 

A Monte Carlo simulation will be conducted via Absoft Pro Fortran v. 11.5.3 (IDE 

2.2) Fortran program written for the WIN/TEL platform. It will be executed on a 64 bit 

Windows Ultimate Eight Core i7 Intel Sandy Bridge 2700k CPU running at 3.5 Ghz, with 

16 Gb of RAM. 

 

Design 

 A two-factor nested layout or hierarchical classification layout will be used. This 

design assumes errors are normally distributed, and the magnitudes of those errors are 

independent from either of the two factors. Specifically, the hypothetical layout pertains 

to an analysis of difference of means between classes taught by different teachers, with 

teachers in turn being nested within different schools. In this layout, student test scores 

will be simulated for three teachers (or classrooms) per each of four schools, as noted 

in the table below. 

 

Table 6 
 
Nested design example data from Kanji (1999, p. 129) 

School I School II School III School IV 

Teacher Teacher Teacher Teacher 

1 2 3 4 5 6 7 8 9 10 11 12 

n1            
n2            
n3            
…           N 
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 It should be noted in the literature, when nested designs are utilized, they are 

almost always conducted through the use of multiple ANOVA tests. Others, such as the 

t test, are generally not found, because rarely are such studies conducted on two 

schools with two teachers per school (e.g., Kanji, 1999 & Winer, 1971). Therefore, when 

a nested layout is demonstrated, the ANOVA test is required. 

 

Sampling Plan 

A pseudo-random number generator will be used to simulate student test scores. 

The data will be generated through Roguewave’s (2012) subroutine libraries for the 

theoretical distributions. Data will be simulated to follow the: Gaussian, uniform, 

exponential, t (df = 3), and Chi-squared (df = 2) distributions. Variates from the 

Gaussian (i.e., normal) distribution will be used to demonstrate the veracity of the 

Fortran coding. Deviates from non-normal distributions are commonly used in Monte 

Carlo studies to illustrate robustness properties with respect to Type I errors for 

departure from population normality. 

Samples will also be obtained from real data sets (Micceri, 1989) via the 

Realpops 2.0 subroutine library (Sawilowsky & Fahoome, 2003); Realpops 2.0 is a 

Fortran 90 updated version of the Fortran 77 subroutine library by Sawilowsky, Blair, 

and Micceri (1990). (For details on the real data sets, see Micceri, 1989, and 

Sawilowsky & Blair, 1992.) The real data sets to be sampled will be the smooth 

symmetric (achievement scores), digit preference (achievement scores), multi-modal 

lumpy (achievement scores), and extreme asymmetry (psychometric scores). 
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Sample sizes will be set to n = 2, 10, 30, 45, and 120. Samples of size n = 2 and 

n = 120 will be selected to represent the theoretical minimum and a reasonable 

maximum study parameter, as is customarily done in Monte Carlo studies. Samples of 

size n = 10, 30, and 45 will be selected to represent small, medium and large 

classrooms, respectively. Under the truth of the null hypothesis (and homoscedasticity 

as modeled in this study), unbalanced layouts (i.e., unequal sample sizes per teacher or 

unequal teachers per school) will have no impact on Type I errors and are therefore not 

modeled. One million repetitions will be executed for each combination of study 

parameters. 

 

Analysis 

 The appropriate analysis for the nested design in Table 1 is a series of two F 

tests. Initially, the F test is conducted to determine if there are teacher differences. 

Under ideal conditions, the intent is to fail to reject the null hypothesis. This is because it 

is assumed that the teachers have similar qualifications (e.g., certification, experience) 

in order to be named the instructor of record. 

The more important test is then conducted. This is an F test for effects, which in 

this case is for the difference in means between schools. When the null hypothesis is 

false, it means the new curriculum administered in at least one school statistically 

significantly changed student scores. The F test should reject this null hypothesis.  

 In the current study, the truth of the null hypothesis is based on the generation of 

pseudo-random numbers. There will be an expected Type I error rate for each of the 
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component tests. The experiment-wise Type I error rate will be determined by the sum 

of those two Type I error rates. 

 This will be accomplished in two ways. The first is unconditional; meaning the 

test for effects (i.e., between schools) will be conducted regardless of the results of the 

test for nesting (i.e., between teachers). The second is conditional; meaning the test for 

effects will only be conducted if and only if (iff) a nesting effect is non-null. 

 Differentiating between unconditional and conditional testing is advisable if the 

general purpose for conducting an intervention study is to determine if there is a 

difference between schools where students did or did not receive an intervention. The 

impact of teacher differences should be negligible. In other words, the school effect 

should only be tested when it can be first shown there was no teacher effect. 

 

Alpha Levels 

 In order to increase generality of results, the F tests invoked in the Monte Carlo 

simulation will be conducted at both the nominal alpha = 0.05 and 0.01 levels. 

 

Table Template 

 The results of the Monte Carlo simulation will be presented in the following 

formats of Table 7 and Table 8. Hence, there will be 2 alpha levels × 9 distributions/data 

sets × 2 condition statuses = 36 tables of results. 
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Table 7 
 

Unconditional Type I error rates, α = 0.05, Gaussian distribution, repetitions = 1,000,000 

n Nest Factor Experiment-wise 

2    
10    
30    
45    120 

   
 
Notes: n = sample size per cell, Factor = School, Nest = Teacher. 

 

Table 8 
 

Conditional Type I error rates, α = 0.05, Gaussian distribution, repetitions = 1,000,000  

n Nest Factor Experiment-wise 

2    
10    
30    
45    120 

   
 
Notes: n = sample size per cell, Factor = School, Nest = Teacher. 

 

Error Isolation 

The Monte Carlo is being conducted using parametric or normal theory tests. 

However, data are also drawn from non-normal distributions. Therefore, the issue arises 

as to where potential results are originating. If the Type I error rates do inflate, it is 

important to determine whether these results are due to experiment-wise Type I error 

inflation or if they are caused by violating the assumption of normality. Typical Type I 

error rates are listed in Table 9.  
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By knowing what happens to the Type I error rate with a single statistical test 

when the assumption of normality is violated, the expected experiment-wise Type I error 

rate will be double this value (for the unconditional method). For example, under an 

exponential distribution with sample size n = 15, the Type I error becomes conservative: 

when nominal alpha is set to 0.05, the actual Type I error rate is 0.04 (Glass, Peckham, 

& Sanders, 1972). (Although making fewer Type I errors than expected sounds good, 

the downside is the power is reduced when the test becomes conservative.) Therefore, 

with unconditional testing of nested effects, the expectation is for 0.04 × 2 = 0.08. In the 

event of experimental results summing to this value (within sampling error due to the 

Monte Carlo), experiment-wise inflation will be isolated as the cause for this error. 

Meanwhile, conditional experiment-wise Type I error rate inflation is more difficult to 

predict. 

 

Table 9 
 
Expected Type I error rates for normal and selected non-normal data at α = 0.05 and α 
= 0.01 (Glass, Peckham, & Sanders1, 1972, p. 250; Sawilowsky and Blair2, 1982 p. 356-
358) 

Distribution / Dataset Resulting alpha (0.05) Resulting alpha (0.01) 

Normal 0.050 0.010 
Exponential1 0.040 0.004 

Uniform1 0.051 0.010 
Digit preference2 0.050 0.012 

Extreme asymmetric2 0.047 0.009 
Multi-modal lumpy2 0.052 0.012 
Smooth symmetric2 0.050 0.010 

Note: These results are for different numbers of repetitions and are based generally on 

the balanced layout of samples sizes n1 = n2 = 20. Increasing the number of repetitions 

and sample sizes will give Type I errors closer to nominal alpha. 
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Chapter 4 

Results 

The following sections contain tables showing the results of the study. 

 

Unconditional 

 The test for the nest and the treatment effect are both conducted in this model of 

analysis. Although it does not matter which test is conducted first for consistency, the 

test for the nest was conducted prior to the test of the effect. A series of tabled results 

are presented, arranged by distribution or dataset type. The entries inside each table 

represent the Type I error rate for the study conditions.  

 

 Gaussian distribution. 

The Gaussian distribution is also known as the normal distribution, or bell curve. 

It is a model commonly used in education. However, a survey by Micceri (1989) 

indicated that real datasets rarely are symmetric with light tails, two features which are 

prominent in the bell curve shown in Figure 1 below. 

 

 

Figure 1: Gaussian distribution (Excerpted from Sawilowsky & Fahoome, 2002, p. 343) 
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The results for data sampled from this distribution are compiled in Tables 10 and 11, 

with Table 10 representing results for the nominal alpha = 0.05 and Table 11 

representing 0.01. 

 

Table 10 
 
Unconditional Type I error rates, α = 0.05, Gaussian distribution, repetitions = 1,000,000 

n Nest Factor Experiment-wise 

2 0.049809 0.050238 0.100047 
10 0.050013 0.050271 0.100284 
30 0.050134 0.049765 0.099899 
45 0.050115 0.050436 0.100551 

120 0.050126 0.049639 0.099765 

 
 

Table 11 
 
Unconditional Type I error rates, α = 0.01, Gaussian distribution, repetitions = 1,000,000 

n Nest Factor Experiment-wise 

2 0.010093 0.009873 0.019966 
10 0.010109 0.010010 0.020119 
30 0.010074 0.010117 0.020191 
45 0.009909 0.010031 0.019940 

120 0.010024 0.009999 0.020023 

 
 

 Chi-squared distribution, 3 degree of freedom. 

The chi-squared distribution is “the distribution of the sums of squares” of normal 

variates (Evans, Hastings, & Peacock, 2000, p. 52). It is a model commonly used in 

education because it is the referent distribution for the chi-squared statistic which is 
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used in cross-tabulations. Through straightforward transformations, it is also related to 

the gamma, F, Poisson, and t distributions. 

 

 

Figure 2: Chi-squared distribution (Excerpted from Sawilowsky & Fahoome, 2002, 

p. 344) 

 

The results for data sampled from this distribution are compiled in Tables 12 and 13, 

with the first table representing results for the nominal alpha = 0.05 and the second 

table representing 0.01. 

 

Table 12 
 
Unconditional Type I error rates, α = 0.05, chi-squared (df = 3) distribution, repetitions = 
1,000,000 

n Nest Factor Experiment-wise 

2 0.054072 0.047537 0.101609 
10 0.048256 0.049527 0.097783 
30 0.049284 0.049878 0.099162 
45 0.049365 0.049755 0.099120 

120 0.049387 0.050258 0.099645 
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Table 13 
 

Unconditional Type I error rates, α = 0.01, chi-squared (df = 3) distribution, repetitions = 
1,000,000 

n Nest Factor Experiment-wise 

2 0.014348 0.010668 0.025016 
10 0.009602 0.010208 0.019810 
30 0.009574 0.010023 0.019597 
45 0.009810 0.010138 0.019948 

120 0.009756 0.010142 0.019898 

 
 

Exponential distribution. 

The exponential distribution is commonly used to model growth and decay. It is a 

special case of the gamma and Weibull distribution. Through various transformations it 

is related to the uniform and Erlang distributions. This distribution is not only of practical 

importance but is a long standing theoretical model of note. For example, the difference 

between two exponential variates is a Laplace variate, and by changing other 

parameters is related to the Pareto and Gumbel distributions. Other members of the 

exponential family include Bernoulli, binomial, geometric, Gaussian, logarithmic, 

Rayleigh and von Mises distributions in the univariate case, and the normal, Dirichlet, 

Wishart multivariate distributions (Evans, Hastings, & Peacock, 2000, p. 81-82). 
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Figure 3: Exponential decay (Excerpted from Sawilowsky & Fahoome, 2002, p. 348) 

 

The results for data sampled from this distribution are compiled in Tables 14 and 15, 

with the first table representing results for the nominal alpha = 0.05 and the second 

table representing 0.01. 

 

Table 14 
 
Unconditional Type I error rates, α = 0.05, exponential distribution, repetitions = 
1,000,000 

n Nest Factor Experiment-wise 

2 0.055038 0.046336 0.101374 
10 0.047278 0.048773 0.096051 
30 0.048832 0.050075 0.098907 
45 0.049161 0.049849 0.099010 

120 0.049749 0.050005 0.099754 
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Table 15 
 

Unconditional Type I error rates, α = 0.01, exponential distribution, repetitions = 
1,000,000 

n Nest Factor Experiment-wise 

2 0.016123 0.010746 0.026869 
10 0.009685 0.010227 0.019912 
30 0.009812 0.010269 0.020081 
45 0.009800 0.009960 0.019760 

120 0.010023 0.010070 0.020093 

 
 

t distribution, 3 degrees of freedom. 

The t distribution, developed by William Sealy Gosset (Student, 1908), forms the 

backdrop for testing the differences between means, one of the most common statistical 

techniques used in the social and behavioral sciences. In the two sample layout, it is the 

square root of F. When df = 1, it is known as the Cauchy distribution (Evans, Hastings, 

& Peacock, 2000, p. 182). As N → ∞, t ~ Z. 

 

 

Figure 4: t distribution (Excerpted from Sawilowsky & Fahoome, 2002, p. 345) 
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The results for data sampled from this distribution are compiled in Tables 16 and 17, 

with the first table representing results for the nominal alpha = 0.05 and the second 

table representing 0.01. 

 

Table 16 
 
Unconditional Type I error rates, α = 0.05, t (df = 3) distribution, repetitions = 1,000,000 

n Nest Factor Experiment-wise 

2 0.041380 0.040655 0.082035 
10 0.044071 0.045085 0.089156 
30 0.046541 0.047470 0.094011 
45 0.047050 0.047384 0.094434 

120 0.048256 0.048455 0.096711 

 
 

Table 17 
 

Unconditional Type I error rates, α = 0.01, t (df = 3) distribution, repetitions = 1,000,000 

n Nest Factor Experiment-wise 

2 0.008599 0.007372 0.015971 
10 0.007965 0.008549 0.016514 
30 0.008581 0.009125 0.017706 
45 0.008754 0.009116 0.017870 

120 0.009222 0.009480 0.018702 

 
 

Uniform distribution. 

 Also known as the rectangular distribution, the uniform distribution forms the 

basis of Monte Carlo studies, because it is used for the generation of random numbers 

that are equiprobable. The uniform distribution has both a continuous and discrete form. 
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Figure 5: Uniform distribution (Excerpted from Sawilowsky & Fahoome, 2002, p. 342) 

 

The results for data sampled from this distribution are compiled in Tables 18 and 19, 

with the first table representing results for the nominal alpha = 0.05 and the second 

table representing 0.01. 

 

Table 18 
 
Unconditional Type I error rates, α = 0.05, uniform distribution, repetitions = 1,000,000 

n Nest Factor Experiment-wise 

2 0.054535 0.052737 0.107272 
10 0.050997 0.050217 0.101214 
30 0.050176 0.050291 0.100467 
45 0.050061 0.049965 0.100026 

120 0.050304 0.050057 0.100361 
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Table 19 
 

Unconditional Type I error rates, α = 0.01, uniform distribution, repetitions = 1,000,000 

n Nest Factor Experiment-wise 

2 0.012261 0.011234 0.023495 
10 0.010462 0.010010 0.020472 
30 0.010214 0.010017 0.020231 
45 0.009918 0.010051 0.019969 

120 0.010121 0.010119 0.020240 

 
 

Digit preference dataset. 

 Tables 20 through 27 repeat the same patterns as Tables 10 – 19 above, except 

the referent distributions were replaced with the large sample datasets by Micceri 

(1989), as coded by Sawilowsky, Blair, and Micceri (1990). As can be observed in 

Figure 6, it is essentially symmetric with light tails, but has certain score prevalences. 

 

 

Figure 6: Digit preference dataset by Micceri (1989) (Excerpted from Sawilowsky & 

Fahoome, 1990, p. 357) 
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The results for data sampled from this dataset are compiled in Tables 20 and 21, with 

the first table representing results for the nominal alpha = 0.05 and the second table 

representing 0.01. 

 

Table 20 
 
Unconditional Type I error rates, α = 0.05, digit preference dataset, repetitions = 
1,000,000 

n Nest Factor Experiment-wise 

2 0.050826 0.050770 0.101596 
10 0.050264 0.049959 0.100223 
30 0.049751 0.050311 0.100062 
45 0.049932 0.049939 0.099871 

120 0.050455 0.050024 0.100479 

 
 

Table 21 
 

Unconditional Type I error rates, α = 0.01, digit preference dataset, repetitions = 
1,000,000 

n Nest Factor Experiment-wise 

2 0.010324 0.010183 0.020507 
10 0.010160 0.010139 0.020299 
30 0.010059 0.010136 0.020195 
45 0.010032 0.009843 0.019875 

120 0.010010 0.010163 0.020173 

 

 

 

 

 



43 
!

Extreme asymmetric dataset. 

This Micceri (1989) dataset is the similar to mathematical exponential 

distributions. As with the theoretical population, the asymmetric datasets can represent 

growth (see Figure 7) or decay. 

 

 

Figure 7: Extreme asymmetric dataset by Micceri (1989) (Excerpted from Sawilowsky & 

Fahoome, 1990, p. 351) 

 

The results for data sampled from this dataset are compiled in Tables 22 and 23, with 

the first table representing results for the nominal alpha = 0.05 and the second table 

representing 0.01. 
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Table 22 
 
Unconditional Type I error rates, α = 0.05, extreme asymmetric dataset, repetitions = 
1,000,000 

n Nest Factor Experiment-wise 

2 0.064911 0.049738 0.114649 
10 0.048979 0.050588 0.099567 
30 0.049553 0.050112 0.099665 
45 0.049147 0.049971 0.099118 

120 0.049837 0.050627 0.100464 

 
 

Table 23 
 

Unconditional Type I error rates, α = 0.01, extreme asymmetric dataset, repetitions = 
1,000,000 

n Nest Factor Experiment-wise 

2 0.023892 0.014844 0.038736 
10 0.010311 0.010586 0.020897 
30 0.009830 0.010206 0.020036 
45 0.009966 0.009978 0.019944 

120 0.009975 0.010134 0.020109 

 
 

Multi-modal lumpy dataset. 

Theoretical bimodal populations (also known as mixed or contaminated normal) 

are prevalent, such as the distribution of language scores of students in a school 

containing native and second language speakers. The Micceri (1989) large sample 

dataset that depicts this condition is also markedly lumpy, as opposed to smooth and 

“interesting mathematical functions” (p. 157) in theoretical models. 
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Figure 8: Multi-modal lumpy dataset by Micceri (1989) (Excerpted from Sawilowsky & 

Fahoome, 1990, p. 354) 

 

The results for data sampled from this dataset are compiled in Tables 24 and 25, with 

the first table representing results for the nominal alpha = 0.05 and the second table 

representing 0.01. 

 

Table 24 
 
Unconditional Type I error rates, α = 0.05, multi-modal lumpy dataset, repetitions = 
1,000,000 

n Nest Factor Experiment-wise 

2 0.054927 0.053243 0.108170 
10 0.058563 0.050270 0.108833 
30 0.050003 0.050406 0.100409 
45 0.049934 0.049937 0.099871 

120 0.050364 0.050075 0.100439 
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Table 25 
 

Unconditional Type I error rates, α = 0.01, multi-modal lumpy dataset, repetitions = 
1,000,000 

n Nest Factor Experiment-wise 

2 0.012824 0.011325 0.024149 
10 0.013750 0.010146 0.023896 
30 0.010275 0.010119 0.020394 
45 0.009990 0.009900 0.019890 

120 0.009944 0.010086 0.020030 

 
 

Smooth symmetric dataset. 

The smooth symmetric dataset is the best estimate of the Gaussian distribution 

that is found in nature. It is smoother than most real datasets, and has light tails. 

However, as indicated by Micceri (1989), none of the datasets of this type found in his 

survey of social and behavioral science datasets passed the Kolgomorov-Smirnov test 

for normality. 

 

 

Figure 9: Smooth symmetric Dataset by Micceri (1989) (Excerpted from Sawilowsky & 

Fahoome, 1990, p. 530) 
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The results for data sampled from this dataset are compiled in Tables 26 and 27, with 

the first table representing results for the nominal alpha = 0.05 and the second table 

representing 0.01. 

 

Table 26 
 
Unconditional Type I error rates, α = 0.05, smooth symmetric dataset, repetitions = 
1,000,000 

n Nest Factor Experiment-wise 

2 0.051114 0.050992 0.102106 
10 0.050295 0.049862 0.100157 
30 0.049573 0.050358 0.099931 
45 0.049793 0.049927 0.099720 

120 0.050428 0.050041 0.100469 

 
 

Table 27 
 

Unconditional Type I error rates, α = 0.01, smooth symmetric dataset, repetitions = 
1,000,000 

n Nest Factor Experiment-wise 

2 0.010500 0.010274 0.020774 
10 0.010119 0.010206 0.020325 
30 0.010039 0.010199 0.020238 
45 0.009953 0.009939 0.019892 

120 0.009918 0.010090 0.020008 
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Conditional 

 The premise of nested designs is the existence of a confounding factor. 

Obviously, if it was known that no nest effect exists, there would be no purpose in 

invoking a nested design. Hence, there is little purpose in conducting a test for effects, 

conditional on failing to reject the null hypothesis for nest effects. However, when the 

nested effect is retained, the sums of squares are partitioned to it in an effort to reduce 

the residual sum of squares used in computing the F ratio for the treatment effect. 

Therefore, the process is completed with conducting the test of effects. The tabled 

results in this section depict the Type I errors and experiment-wise inflations when the 

test of effects is conducted iff the nested effect is statistically significant.  

 

 Gaussian distribution. 

The results for data sampled from this distribution are compiled in Tables 28 and 

29, with the first table representing results for the nominal alpha = 0.05 and the second 

table representing 0.01. 

 

Table 28 
 
Conditional Type I error rates, α = 0.05, Gaussian distribution, repetitions = 1,000,000 

n Nest Factor Experiment-wise 

2 0.049809 0.001646 0.051455 
10 0.050013 0.000080 0.050093 
30 0.050134 0.000020 0.050154 
45 0.050115 0.000020 0.050135 

120 0.050126 0.000020 0.050146!
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Table 29 
 

Conditional Type I error rates, α = 0.01, Gaussian distribution, repetitions = 1,000,000 

n Nest Factor Experiment-wise 

2 0.010093 0.000099 0.010192 
10 0.010109 0.000000 0.010109 
30 0.010074 0.000000 0.010074 
45 0.009909 0.000000 0.009909 

120 0.010024 0.000000 0.010024!

 
 

Chi-square distribution, 3 degree of freedom. 

The results for data sampled from this distribution are compiled in Tables 30 and 

31, with the first table representing results for the nominal alpha = 0.05 and the second 

table representing 0.01. 

 

Table 30 
 
Conditional Type I error rates, α = 0.05, chi-squared (df = 3) distribution, repetitions = 
1,000,000 

n Nest Factor Experiment-wise 

2 0.054072 0.002256 0.056328 
10 0.048256 0.000104 0.048360 
30 0.049284 0.000000 0.049284 
45 0.049365 0.000000 0.049365 

120 0.049387 0.000000 0.049387 
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Table 31 
 

Conditional Type I error rates, α = 0.01, chi-squared (df = 3) distribution, repetitions = 
1,000,000 

n Nest Factor Experiment-wise 

2 0.014348 0.000070 0.014418 
10 0.009602 0.000000 0.009602 
30 0.009574 0.000000 0.009574 
45 0.009810 0.000000 0.009810 

120 0.009756 0.000000 0.009756 

 
 

Exponential distribution. 

The results for data sampled from this distribution are compiled in Tables 32 and 

33, with the first table representing results for the nominal alpha = 0.05 and the second 

table representing 0.01. 

 

Table 32 
 
Conditional Type I error rates, α = 0.05, exponential distribution, repetitions = 1,000,000 

n Nest Factor Experiment-wise 

2 0.055038 0.002362 0.057400 
10 0.047278 0.000021 0.047299 
30 0.048832 0.000021 0.048853 
45 0.049161 0.000041 0.049202 

120 0.049749 0.000000 0.049749 
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Table 33 
 

Conditional Type I error rates, α = 0.01, exponential distribution, repetitions = 1,000,000 

n Nest Factor Experiment-wise 

2 0.016123 0.000062 0.016185 
10 0.009685 0.000000 0.009685 
30 0.009812 0.000000 0.009812 
45 0.009800 0.000000 0.009800 

120 0.010023 0.000000 0.010023 

 
 

t distribution, 3 degrees of freedom. 

The results for data sampled from this distribution are compiled in Tables 34 and 

35, with the first table representing results for the nominal alpha = 0.05 and the second 

table representing 0.01. 

 

Table 34 
 
Conditional Type I error rates, α = 0.05, t (df = 3) distribution, repetitions = 1,000,000 

n Nest Factor Experiment-wise 

2 0.041380 0.001474 0.042854 
10 0.044071 0.000023 0.044094 
30 0.046541 0.000022 0.046563 
45 0.047050 0.000000 0.047050 

120 0.048256 0.000000 0.048256 
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Table 35 
 

Conditional Type I error rates, α = 0.01, t (df = 3) distribution, repetitions = 1,000,000 

n Nest Factor Experiment-wise 

2 0.008599 0.000000 0.008599 
10 0.007965 0.000000 0.007965 
30 0.008581 0.000000 0.008581 
45 0.008754 0.000000 0.008754 

120 0.009222 0.000000 0.009222 

 
 

Uniform distribution. 

The results for data sampled from this distribution are compiled in Tables 36 and 

37, with the first table representing results for the nominal alpha = 0.05 and the second 

table representing 0.01. 

 

Table 36 
 
Conditional Type I error rates, α = 0.05, uniform distribution, repetitions = 1,000,000 

n Nest Factor Experiment-wise 

2 0.054535 0.002714 0.057249 
10 0.050997 0.000059 0.051056 
30 0.050176 0.000000 0.050176 
45 0.050061 0.000040 0.050101 

120 0.050304 0.000000 0.050304 
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Table 37 
 

Conditional Type I error rates, α = 0.01, uniform distribution, repetitions = 1,000,000 

n Nest Factor Experiment-wise 

2 0.012261 0.000082 0.012343 
10 0.010462 0.000000 0.010462 
30 0.010214 0.000000 0.010214 
45 0.009918 0.000000 0.009918 

120 0.010121 0.000000 0.010121 

 
 

Digit preference dataset. 

The results for data sampled from this distribution are compiled in Tables 38 and 

39, with the first table representing results for the nominal alpha = 0.05 and the second 

table representing 0.01. 

 

Table 38 
 
Conditional Type I error rates, α = 0.05, digit preference dataset, repetitions = 1,000,000 

n Nest Factor Experiment-wise 

2 0.050826 0.002086 0.052912 
10 0.050264 0.000000 0.050264 
30 0.049751 0.000020 0.049771 
45 0.049932 0.000000 0.049932 

120 0.050455 0.000020 0.050475 
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Table 39 
 

Conditional Type I error rates, α = 0.01, digit preference dataset, repetitions = 1,000,000 

n Nest Factor Experiment-wise 

2 0.010324 0.000000 0.010324 
10 0.010160 0.000000 0.010160 
30 0.010059 0.000000 0.010059 
45 0.010032 0.000000 0.010032 

120 0.010010 0.000000 0.010010 

 
 

Extreme asymmetric dataset. 

The results for data sampled from this distribution are compiled in Tables 40 and 

41, with the first table representing results for the nominal alpha = 0.05 and the second 

table representing 0.01. 

 

Table 40 
 
Conditional Type I error rates, α = 0.05, extreme asymmetric dataset, repetitions = 
1,000,000 

n Nest Factor Experiment-wise 

2 0.064911 0.003790 0.068701 
10 0.048979 0.000041 0.049020 
30 0.049553 0.000000 0.049553 
45 0.049147 0.000020 0.049167 

120 0.049837 0.000000 0.049837 
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Table 41 
 

Conditional Type I error rates, α = 0.01, extreme asymmetric dataset, repetitions = 
1,000,000 

n Nest Factor Experiment-wise 

2 0.023892 0.000251 0.024143 
10 0.010311 0.000000 0.010311 
30 0.009830 0.000000 0.009830 
45 0.009966 0.000000 0.009966 

120 0.009975 0.000000 0.009975 

 
 

Multi-modal lumpy dataset. 

The results for data sampled from this distribution are compiled in Tables 42 and 

43, with the first table representing results for the nominal alpha = 0.05 and the second 

table representing 0.01. 

 

Table 42 
 
Conditional Type I error rates, α = 0.05, multi-modal lumpy dataset, repetitions = 
1,000,000 

n Nest Factor Experiment-wise 

2 0.054927 0.002968 0.057895 
10 0.058563 0.000017 0.058580 
30 0.050003 0.000020 0.050023 
45 0.049934 0.000020 0.049954 

120 0.050364 0.000020 0.050384 
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Table 43 
 

Conditional Type I error rates, α = 0.01, multi-modal lumpy dataset, repetitions = 
1,000,000 

n Nest Factor Experiment-wise 

2 0.012824 0.000000 0.012824 
10 0.013750 0.000000 0.013750 
30 0.010275 0.000000 0.010275 
45 0.009990 0.000000 0.009990 

120 0.009944 0.000000 0.009944 

 
 

Smooth symmetric dataset. 

The results for data sampled from this distribution are compiled in Tables 44 and 

45, with the first table representing results for the nominal alpha = 0.05 and the second 

table representing 0.01. 

 

Table 44 
 
Conditional Type I error rates, α = 0.05, smooth symmetric dataset, repetitions = 
1,000,000 

n Nest Factor Experiment-wise 

2 0.051114 0.002015 0.053129 
10 0.050295 0.000000 0.050295 
30 0.049573 0.000040 0.049613 
45 0.049793 0.000000 0.049793 

120 0.050428 0.000000 0.050428 

 

 

 

 



57 
!

Table 45 
 

Conditional Type I error rates, α = 0.01, smooth symmetric dataset, repetitions = 
1,000,000 

n Nest Factor Experiment-wise 

2 0.010500 0.000000 0.010500 
10 0.010119 0.000000 0.010119 
30 0.010039 0.000000 0.010039 
45 0.009953 0.000000 0.009953 

120 0.009918 0.000000 0.009918 
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Chapter 5 

Discussion 

Kreft and De Leeuw (1998) noted, 

 

Hierarchical data structures are very common in the social and behavioral 
sciences… Once you know that hierarchies exist, you see them 
everywhere… Examples include students nested within schools, 
employees nested within firms, or repeated measurements nested within 
persons. (p. 1) 
 
  

Similarly, Gonzales (2009) indicated when the “factors are not crossed… we cannot use 

the machinery of the factorial analysis of variance” (p. 313). The proposed solution is to 

turn to nested designs which are “now a major area of research in social science 

statistics” (p. 314). Gonzales (2009) concluded: “Multilevel modeling techniques permit 

simultaneous modeling of all the levels that are accounted for in the design” (p. 315). 

Unfortunately, the observations of Kreft and De Leeuw and Gonzales overlook 

the impact of conducting statistical tests in a hierarchical model in general and in nested 

designs in particular. Gonzales (2009) attempted to forestall the impact of multiple 

testing with the rhetorical question, “Aren’t we capitalizing on chance by making so 

many comparisons?” (p. 336). The first answer given was to make nested designs 

analogous to factorial ANOVA where there appears to be no concern in the statistical 

literature over the inflation of Type I error in testing main effects and interactions. 

However, as noted by Kromrey and Dickenson (1995), and discussed at length in 

Chapter 2, this provides no safe haven from experiment-wise Type I error inflation. 

The second argument advanced by Gonzales to preclude issues of multiple 

testing in nested designs was, “Replication is the best way to deal with concerns about 
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multiple tests and inflated Type I error rates” (p. 337). However, Sawilowsky (2007b) 

demonstrated in a Monte Carlo experiment that “replicating the same poor design has 

little chance of contributing accurate evidence for or against the effectiveness of a 

treatment, or for quantifying the magnitude of its effectiveness if it exists” (p. 221-222). 

The third argument advanced by Gonzales (2009) was to apply a correction such 

as the Bonferroni-Dunn technique (p. 285). This is precisely the solution strategy 

previously proposed by Kromrey and Dickenson (1995). However, such methods 

always result in a reduction of statistical power and should be used as a last resort.  

Indeed, despite offering these three solution strategies, Gonzales (2009) 

concluded that experiment-wise Type I error rate inflation was something that 

researchers need not take seriously. However, to his credit, Gonzales’ final word on this 

issue was “We admit that we are in the minority among methodologists on this particular 

point” (p. 285). 

Hence, the purpose of this study was to explicate the impact of simple nesting 

designs on experiment-wise Type I error rates via a Monte Carlo exercise. Study 

parameters included popular population distributions and vetted large datasets to 

generate samples using common sample sizes and alpha levels for the single nested 

layout of three teachers per school with four schools. The tests for the nest and effect 

were conducted unconditionally and conditionally. 

As predicted by theory (Marascuillo & Serlin, 1988), the results in Tables 10-27 

demonstrate that conducting a series of two statistical tests unconditionally, regardless 

of the nature of those tests, produces an experiment-wise Type I error rate of 

approximately twice nominal alpha. Tables 46-47 contain a compilation of those results. 
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Table  46 
 
Summary of average Type I Error rates for various distributions/datasets, unconditional, 
alpha = 0.05 

Distribution/Dataset Nest (Teacher) Factor (School) Experiment-wise 

Normal 0.050039 0.050070 0.100109 
Chi-square (df=3) 0.050073 0.049391 0.099464 

Exponential 0.050012 0.049008 0.099019 
t (df=3) 0.045460 0.045810 0.091269 
Uniform 0.051215 0.050653 0.101868 

Digit preference 0.050246 0.050201 0.100446 
Extreme asymmetric 0.052485 0.050207 0.102693 
Multi-modal lumpy 0.052758 0.050786 0.103544 
Smooth symmetric 0.050241 0.050236 0.100477 

 
 

Table  47 
 
Summary of average Type I Error rates for various distributions/datasets, unconditional, 
alpha = 0.01 

Distribution/Dataset Nest (Teacher) Factor (School) Experiment-wise 

Normal 0.010042 0.010006 0.020048 
Chi-square (df=3) 0.010618 0.010236 0.020854 

Exponential 0.011089 0.010254 0.021343 
t (df=3) 0.008624 0.008728 0.017353 
Uniform 0.010595 0.010286 0.020881 

Digit preference 0.010117 0.010093 0.020210 
Extreme asymmetric 0.012795 0.011150 0.023944 
Multi-modal lumpy 0.011357 0.010315 0.021672 
Smooth symmetric 0.010106 0.010142 0.020247 

 
 

In Tables 48-49, the Type I error rates are averaged as in the previous two 

tables, except the test for the factor (i.e., School) is conducted conditionally subsequent 

to a significant test of the nesting effect. In order to understand these results, consider 

Bradley’s (1978) definition for two levels of robustness. The conservative definition is 
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met when the Type I error rate is within the bounded interval [0.5α - 1.5α] inclusive, and 

the liberal definition is met when the Type I error rate is within the bounded interval 

[0.9α - 1.1α] inclusive. The results for the factor (School) are ultra-conservative, falling 

far below 0.025 when the test is conducted at the 0.05 nominal alpha level, and below 

.005 when the test is conducted at the 0.01 nominal alpha level. In addition, the impact 

of being ultra conservative means the test for the factor (School) greatly lacks statistical 

power. 

 

Table  48 
 
Summary of average Type I Error rates for various distributions/datasets, conditional, 
alpha = 0.05 

Distribution/Dataset Nest (Teacher) Factor (School) Experiment-wise 

Normal 0.050039 0.000357 0.050397 
Chi-square (df=3) 0.050073 0.000472 0.050545 

Exponential 0.050012 0.000489 0.050500 
t (df=3) 0.045460 0.000304 0.045763 
Uniform 0.051215 0.000563 0.051777 

Digit preference 0.050246 0.000425 0.050671 
Extreme asymmetric 0.052485 0.000770 0.053256 
Multi-modal lumpy 0.052758 0.000609 0.053367 
Smooth symmetric 0.050241 0.000411 0.050652 

Note: Values in italics are nonrobust according to Bradley’s (1978) liberal definition. 
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Table  49 
 
Summary of average Type I Error rates for various distributions/datasets, conditional, 
alpha = 0.01 

Distribution/Dataset Nest (Teacher) Factor (School) Experiment-wise 

Normal 0.010042 0.000020 0.010062 
Chi-square (df=3) 0.010618 0.000014 0.010632 

Exponential 0.011089 0.000012 0.011101 
t (df=3) 0.008624 0.000000 0.008624 
Uniform 0.010595 0.000016 0.010612 

Digit preference 0.010117 0.000000 0.010117 
Extreme asymmetric 0.012795 0.000050 0.012845 
Multi-modal lumpy 0.011357 0.000000 0.011357 
Smooth symmetric 0.010106 0.000000 0.010106 

Note: Values in italics are non-robust according to Bradley’s (1978) liberal definition. 

 

Statistical Power Projections 

 As previously noted, conducting the test of the Factor (i.e., School) conditionally 

will create a lack of statistical power due to the ultra-conservative nature of being the 

second in sequence in a series of two tests. Although it is beyond the scope of the 

current study to conduct a full-scale power spectrum analysis, in an attempt to explain 

the impact on statistical power, a treatment alternative of shift in location parameter was 

introduced. 

The study parameters for this brief power study included setting nominal alpha to 

0.05. Data were sampled from the Gaussian distribution, the sample size was set at n = 

2, and both unconditional and conditional testing were conducted. The treatment was 

modeled by the addition of a constant equal to 0.5σ, where σ = 1 when the referent 

distribution is normal to create an effect size of Cohen’s d = 0.5. The magnitude of this 

effect size is considered moderate (Cohen, 1988). 
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The treatment conditions were set in two studies as follows. For Study 1, an 

effect size of 0.5 was added to a single teacher per school. This created a difference 

among the twelve teachers, while leaving the schools equal. For Study 2, all teachers in 

a single school were simulated to receive the treatment, creating a difference between 

both the teachers and the schools. Due to the layout of nested designs, in this case with 

teachers contained within the school where they work, it is impossible to simulate a 

change between schools only. The results are compiled in Table 50. 

 

Table 50 
 
Statistical power projection, normal distribution, alpha = 0.05, n = 2 

 
 

 
Power 

 
Study parameters 

 
Unconditional Conditional 

Recipient Alpha 
ES 

Teacher 
ES 

School  
Teacher School Teacher School 

Teacher 0.05 0.5 0.0 
 

0.194 0.054 0.194 0.011 
 

Teacher and 
School 

0.05 S1 = 0.5 S2-4 = 0.0 
 

0.121 0.114 0.121 0.089 

Notes: ES = effect size in standard deviations, S1 = School 1, S2-4 = Schools 2, 3 & 4. 

 

 As noted, with the given study parameters, the unconditional and conditional 

power for the test of the nest effect (Teacher) was 0.194. In the unconditional layout, the 

expected Type I error rate of approximately 0.05 was obtained, however, in the 

conditional, the Type I error rate was ultra-conservative at 0.011. The loss in power 

becomes apparent in Study 2. Although the power was approximately the same for the 
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treatment effect (0.121 and 0.114, respectively) for the conditional layout, the power 

obtained for the effect (school) was reduced to from 0.141 to 0.089, which is a severe 

loss in power of approximately 22%. 

 

Conclusion 

Prior to drawing a conclusion in resolving the issue of the impact of nesting on 

the inflation of experiment-wise Type I error rates, it should be mentioned that there are 

potentially other statistical techniques that could have been incorporated, such as the 

nonparametric Kruskal-Wallis and the rank transform tests. Neither test is a solution for 

the inflation of experiment-wise Type I errors, but it is not known if either would help 

recover some of the lost power. However, because neither the Kruskal-Wallis nor the 

rank transform tests have been developed specifically for nested layouts, they were not 

incorporated in the study. 

As Kromrey and Dickenson (1995) showed, the testing of multiple effects in a 

layout can be safely carried out via invoking a Bonferroni-Dunn or similar technique. 

However, as it stands, the statistical power available to the testing of the treatment 

effect conditional on a significant nested effect is already severely reduced due to the 

procedure being ultra-conservative. The use of Bonferroni-Dunn or related methods will 

only further reduce statistical power. 

Heck, Thomas, and Tabata (2010) noted more sophisticated nested designs “are 

rapidly growing in their popularity and use” (p. 320), which will only exacerbate the 

issues outlined in this study. In conclusion, researchers should heavily weigh the trade-
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offs of experiment-wise Type I error inflation for unconditional and statistical power loss 

for conditional nested designs.  
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When conducting a statistical test the initial risk that must be considered is a 

Type I error, also known as a false positive. The Type I error rate is set by nominal 

alpha, assuming all underlying conditions of the statistic are met. Experiment-wise Type 

I error inflation occurs when multiple tests are conducted overall for a single experiment. 

There is a growing trend in the social and behavioral sciences utilizing nested designs. 

A Monte Carlo study was conducted using a two layer design. Five theoretical 

distributions and four real datasets taken from Micceri (1989) were used, each with five 

different samples sizes and conducted with nominal alpha set to 0.05 and 0.01. These 

were conducted both unconditionally and conditionally. All permutations were executed 

for 1,000,000 repetitions. It was found that when conducted unconditionally, the 

experiment-wise Type I error rate increases from alpha = 0.05 to 0.10 and 0.01 

increases to 0.02. Conditionally, it is extremely unlikely to ever find results for the factor, 

as it requires a statistically significant nest as a precursor, which leads to extremely 

reduced power. Hence, caution should be used when interpreting nested designs. 
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