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CHAPTER 1 INTRODUCTION 

Missing data threaten the validity of clinical trials, yet receive little attention in the 

literature (O’Neill & Temple, 2012; Wood, White, & Thompson, 2004). Poor approaches for 

treating missing values can produce biased estimates, distorted statistical power, and invalid 

conclusions (Acock, 2005; Enders, 2010; Fichman & Cummings, 2003; Graham, 2012). These 

consequences are especially serious for phase III trials, which are intended to provide evidence 

of the efficacy and safety of medical treatments. The use of inadequate missing data methods can 

also impede the construction of valid prognostic models (Burton & Altman, 2004), undermine 

random assignment in randomized controlled trials (RCTs), and violate the intention to treat 

(ITT) approach to the analysis of clinical trial data.   

Statistical power (rejecting a false null hypothesis) has also received less attention than it 

deserves (Cohen, 1962, 1988, 1990; Murphy, Myors, & Wolach, 2009). The literature is replete 

with meta-analyses demonstrating the shockingly low (e.g., .25) power of clinical trials (e.g., 

Button et al., 2013; Moher, Dulberg, & Wells, 1994; Tsang, Colley, & Lynd, 2009).  The almost 

total lack of attention to Type II error (failure to reject a false null hypothesis) and its 

consequences have “worrying implications” (Williams & Seed, 1992, p. 321). In clinical 

research, a high probability of Type II error can lead to the underreporting of serious adverse 

events (e.g., death, major bleeding, serious infections) and erroneous conclusions of equivalent 

toxicity (Tsang et al., 2009). The conclusions derived from underpowered studies are often 

contradictory (Howard, Maxwell, & Fleming, 2000; Maxwell, 2004; Rossi, 1990) and make it 

difficult to draw coherent clinical inferences from the literature (Maxwell, 2004). Failing to 

detect the effects of treatments or interventions may also contribute to the premature termination 

of potentially valuable research (Cohen, 1962; Williams & Seed, 1993; Yuen & Pope, 2008) and 
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this is especially true when Type II errors are committed in exploratory studies involving 

innovative designs or small treatment effects (Chase & Chase, 1976; Freiman, Thomas, 

Chalmers, Smith, & Kuebler, 1978; Woods, Rippeth, Conover, Carey, Parsons, & Tröster, 2006).  

 Unfortunately, the consequences of underpowered studies are often exacerbated by the 

use of outdated missing data techniques. Listwise deletion (the practice of discarding cases with 

one or more missing values) has been shown to drastically increase the probability of a Type II 

error, yet still continues to dominate the RCT literature (Mackinnon, 2010; Wood et al., 2004), 

even in areas such as cancer research (Burton & Altman, 2004). Multiple appeals have called for 

the abandonment of traditional approaches (including listwise deletion) in favor of more 

principled methods (see Chapter 2).  

 Multiple imputation (MI) is a promising approach to treating missing data. First proposed 

by Rubin (1976) and elaborated in 1987, MI replaces missing values with m > 1 sets of imputed 

values, resulting in m complete datasets. Each of the datasets is analyzed and the results are 

combined to yield one set that reflects both within- and between-imputation uncertainty.  

Initial MI procedures assumed a large joint model for variables (e.g., a joint normal 

distribution). As almost all datasets have mixtures of incomplete categorical and continuous 

variables, this assumption rarely holds in practice. Fully conditional specification (FCS) or 

multiple imputation using chained equations (MICE) is a flexible alternative to joint models. The 

procedure specifies an individual regression model for each variable using the other variables in 

the model as predictors. 

 Empirical evidence has suggested that MI is unbiased when the data are normally 

distributed (e.g., Choi, Golder, Gillmore, & Morrison, 2005; Collins, Schafer & Kam, 2001; 

Graham & Schafer, 1999; Raghunathan, Lepkowski, Van Hoewyk, & Solenberger, 2001; Van 
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Buuren, Brand, Groothuis-Oudshoorn, & Rubin, 2006), but its performance under nonnormality 

is unclear. A simulation by Demirtas, Freels and Yucel (2008) showed that MI performed 

reasonably well when the normality assumption was clearly violated and the sample was 

relatively large (n > 400). According to Van Buuren (2012), the effect of nonnormality is 

generally small for measures that rely on the center of the distribution but could be substantial 

for other types of estimates. A simulation involving several sequential regression MI methods 

(and extensions which adjust for nonnormal error terms) found that MI performed well for 

estimating marginal means and regression coefficients when the error distribution was flat or 

moderately heavy tailed but had poor performance when the distribution was strongly heavy 

tailed (He and Raghunathan, 2009).  

 Although MI has been successfully used in large epidemiologic and biomedical datasets 

(e.g., Centers for Disease Control and Prevention AIDS surveillance system, National Health and 

Nutrition Examination Survey, National Medical Expenditure Survey), its small sample 

properties are unclear. Early research by Graham & Schafer (1999) showed that MI performed 

well when samples were small (n = 50), but recent simulations suggest that MI may have biases 

in small samples, even when the data are normally distributed (Demirtas et al., 2008; Von 

Hippel, 2013b). 

 Given its potential for improving the validity of RCT results (Sterne et al., 2009), there 

has been a call for investigations into MI’s properties and limitations (Enders, 2010; Graham, 

2012; Lee & Carlin, 2012; Rässler, Rubin & Zell, 2013; Stuart, Azur, Frangakis, & Leaf, 2009). 

In addition to an appeal for more systematic research, there have been specific requests for 

investigations into MI’s effect on small samples (Von Hippel, 2004) and power (Davey & Savla, 

2010; Young, Weckman & Holland, 2011). In a call to action, the National Academy of Science, 
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in a special report to the Food and Drug Administration (2010), urged sponsors of clinical trials 

to make the treatment of missing data a priority, proposed that approved missing data techniques 

be limited to those that account for the uncertainty attributable to missing data (e.g., MI), and 

identified several high priority areas for missing data research (e.g., the effect of missing data on 

power, the robustness of missing data methods, and the development of software that supports 

coherent missing data analysis).  

 In response to demands for more principled methods of handling missing data, IBM 

SPSS Statistics (hereafter referred to as SPSS) added easy to implement MI routines based on the 

chained equation approach (see Grace & Sawilowsky, 2009, for a comparison of missing data 

software). By eliminating the need for specialized software and advanced analytical training, the 

program allows clinicians, unfamiliar with MI, to utilize the technique when analyzing 

incomplete data. 

Statement of the Problem 

 Methodologists have described missing data as “one of the most important statistical and 

design problems in research” (methodologist William Shadish, cited in Azar, 2002, p. 70). The 

National Academy of Science (2010) identified numerous high priority areas for missing data 

research that are echoed in the literature. This study will address several of those areas by 

systematically investigating the impact of MI on the rejection rate of the independent samples t 

test (also referred to as the t test) under a range of conditions that reflect the interplay of 

complexities that arise when analyzing differences between treatment arms in RCTs. More 

specifically, this investigation will utilize a factorial design that will examine eight sample sizes, 

five treatment effect sizes, three fractions of missing data, three distributions, and two alpha 

levels to determine if MI impacts Type II error in RCTs. 
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In addition to identifying areas for missing data research, the National Academy of 

Science (2010) urged analysts and clinical reviewers to become familiar with current missing 

data terminology and techniques. To help clinicians meet this objective, this study also seeks to 

provide an overview of the MI procedure, as implemented in SPSS, with a focus on the practical 

aspects and challenges of using this method.  

Human Participants 

 This research will utilize a Monte Carlo simulation approach that does not involve human 

subjects. 

Declaration of Interest 

 The author has no competing interests. 
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Table 1 

Abbreviations & Symbols 

 

Abbreviation  

or Symbol 

 

Definition 

 The probability of making a Type I error 

 The probability of making a Type II error (1-  denotes statistical power) 

CI Confidence interval 

d Effect size (Cohen’s d) 

df Degrees of freedom 

ES Effect size 

FCS  Fully conditional specification  

FMI (γ) 

HRR 

Fraction of missing information 

Highest rejection rate 

ITT Intention to treat 

λ Proportion of variance attributable to missing data 

LD 

LRR 

Listwise deletion (also referred to as complete case analysis) 

Lowest rejection rate 

MAR Missing at random 

MCAR Missing completely at random 

MICE Multiple imputation by chained equations 

MIS Missing 

MS Mean substitution 

MNAR Missing not at random 

MI Multiple imputation 

μ Population mean 

n Number of cases (generally in a subsample) 

OBS Observed 

PD 

PDI 

Pairwise deletion 

Percentage of data imputed 

θ Parameter of interest 

RCT Randomized controlled trial 

RE Relative efficiency 

RI Regression imputation 

σ Population standard deviation 

SPSS IBM SPSS Statistics 

t test Independent samples t test 
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CHAPTER 2 LITERATURE REVIEW 

 Because RCTs create equivalent groups (i.e., balance prognostic factors) by randomly 

assigning participants to different treatment arms, they allow researchers to draw causal 

conclusions about the efficacy and adverse effects of treatments or interventions. Less than 

optimum strategies for treating missing values can undermine random assignment and seriously 

compromise the validity of clinical trials. MI is a promising alternative to traditional methods 

that has been shown to be unbiased when the data are normally distributed (e.g., Choi, et al., 

2005; Collins, et al., 2001; Graham & Schafer, 1999; Raghunathan, et al., 2001; Van Buuren et 

al., 2006), but its small sample properties and performance under nonnormality are unclear. The 

purpose of this study is to investigate the impact of MI on the rejection rate of the independent 

samples t test under varying conditions of sample size, effect size, fraction of missing data, 

distribution shape, and alpha. To provide readers with a solid understanding of the different 

facets of this research, this chapter is divided into three sections. The first section provides an 

overview of missing data, including its theoretical underpinnings. More specifically, it examines 

missing data mechanisms, patterns of missing data, traditional approaches to the handling of 

missing data, and the pervasiveness of traditional approaches. The second section provides a 

foundation for understanding the outcome of this study. It explains statistical power, the almost 

total lack of attention to Type II error in the literature, and the impact of Type II error on the 

validity of RCTs. The final section reviews the results of previous investigations into the 

performance of MI; describes the MI procedure, as implemented in SPSS, with a focus on the 

practical aspects and challenges of using this method; and examines the robustness of the 

statistical test that will be used in the analysis phase of the MI procedure. 
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Overview of Missing Data 

Missing data can seriously affect the validity of clinical research (McKnight, McKnight, 

Sidani, & Figueredo, 2007). The magnitude of the impact depends on the mechanisms that led to 

the missing data, the amount of missing data, and the pattern of missing data (McKnight, et. al, 

2007; Tabachnick & Fidell, 2007). 

Mechanisms. Rubin (1976) identified three missing data mechanisms that serve as 

probabilistic explanations for how missing values are related to variables in a dataset. The 

mechanisms are not characteristics of the dataset but rather assumptions that apply to specific 

analyses. Although it is often difficult to discern the form of mechanisms (Collins et al., 2001), a 

sensitivity analysis conducted by Graham, Hofer, Donaldson, Mackinnon, and Schafer (1997) 

showed that the effects of inaccessible mechanisms are minimal in the implementation of MI. 

The mechanisms can be classified as missing completely at random (MCAR), missing at random 

(MAR), and missing not at random (MNAR). 

 Although MCAR is a strict assumption that is rarely satisfied in practical applications 

(Acock, 2005; Enders, 2001; Raghunathan, 2004), it is the principal assumption underlying the 

traditional approaches to missing data. Under the MCAR condition, missing values are not 

related to either observed or missing values in a dataset. Because the distribution of missing 

values cannot be predicted, the observed data can be treated as a simple random sample and the 

mechanism capturing the reason for the missing values can be ignored for sampling-based and 

likelihood-based inferences (Little & Rubin, 2002). Using Rubin’s (1976) notation, the MCAR 

mechanism can be represented by 

p (R|θ) 
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where p is the probability distribution, R is the response indicator (observed or missing), and θ is 

a parameter that describes the relationship between R and the data.  

 MCAR is the only missing data mechanism that is testable. Although it does not provide 

definitive evidence, Little’s (1988) multivariate test can assess whether the MCAR condition is 

tenable (Littell, Roderick, & Schenker, 1995). The test produces a chi-square value that 

compares the observed variable means for each pattern of missing data with the expected 

population means. If the test is significant, the data are not MCAR. Although MCAR is not an 

assumption of MI, the test is still useful for identifying correlates of missingness that should be 

included in the imputation model. MI has been shown to be unbiased and efficient under the 

MCAR condition (Enders, 2006). 

 The MAR mechanism is less restrictive and more tenable than MCAR and is the principal 

assumption required for most forms of imputation. Under this condition, missing values are 

related to observed values, but not to missing values. The MAR mechanism can be represented 

by  

p (R|Yobs, θ) 

where p is the probability distribution, R is the response indicator (observed or missing), Yobs is 

the observed data, and θ is a parameter that describes the relationship between R and the data. 

MAR is the most common mechanism in epidemiologic research (Moons, Donders, Stijnen, & 

Harrell, 2006) and MI has been shown to be unbiased and efficient under this condition (Buhi, 

Goodson, & Neilands, 2008; Little & Rubin, 2002). Because MI does not require information 

about θ, the mechanism capturing the reason for missing data can be ignored.  

 The MNAR condition is present when missing values are related to the values that are 

missing and cannot be ignored. The mechanism can be represented by  
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p (R|Yobs, Ymis, θ) 

where p is the probability distribution, R is the response indicator (observed or missing), Yobs is 

the observed data, Ymis is the missing data, and θ is a parameter that describes the relationship 

between R and the data. MI has been shown to perform reasonably well under the MNAR 

condition (Collins et. al, 2001; Sinharay, Stern, & Russell, 2001), even with 25% of the data 

missing (Buhi et al., 2008). Using a nonignorable imputation model (Van Buuren, 2012) or 

including variables that account for missingness in the imputation model (Moons et al., 2006; 

Van Buuren, 2012) can reduce the impact of MNAR. Readers who are interested in MNAR 

analysis methods are referred to Enders, 2010. 

 Amount of missing data. There is not a consensus regarding the percentage of missing 

data that can be tolerated by RCTs. Even a few MNAR values can seriously affect the 

generalizability of results (Tabachnick & Fidell, 2007). Evidence suggests that the bias 

introduced by the fraction of missing data may depend on the method used to address the 

problem. A simulation by Berlin (2009) demonstrated that listwise deletion could incorrectly 

yield a nonsignificant treatment effect (i.e., a Type II error) with only 5% of the data missing. In 

contrast, Choi et al. (2005) showed that MI (as employed in the statistical programs EMCOV, 

NORM, Amos, and Mplus) could provide parameter estimates that come close to those of the 

population with 50% of the data missing.  

 Missing data patterns. The MI procedure recognizes two patterns of missing data: 

monotone and arbitrary. Readers who are interested in other missing data patterns (e.g., latent 

variable, missing by design) are directed to Enders, 2010; and Little & Rubin, 2002. A monotone 

pattern (Figure 1) is typically associated with attrition (Enders, 2010; Rässler et al., 2013) and is 

present when data on an individual measurement are missing on all subsequent measurements. 
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Let Yj be the jth variable,  j = 1, 2, … , p in a dataset. Having a missing value on variable Yj also 

means having missing values on all of the following variables Yj + 1,   , Yp. The univariate 

pattern (Figure 2) is a special type of monotone pattern that occurs when missing values are 

confined to a single variable. This pattern frequently occurs in experimental studies (Enders, 

2010). If the data follow a monotone pattern, SPSS imputes the missing values using a 

noniterative estimation algorithm (see Schafer, 1997, p. 218 – 238 for discussion). The arbitrary 

pattern (Figure 3) is present when missing values are randomly dispersed throughout the data 

matrix. If the data follow this pattern, SPSS uses an iterative Markov chain Monte Carlo method 

to impute the missing values. 
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a. Variables are sorted on missing patterns.  

b. Number of complete cases if variables missing in that pattern (marked with X) are not used. 

 

Figure 1. Monotone pattern of missing data. Simulated SPSS output. 
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a. Variables are sorted on missing patterns.  
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Figure 2. Univariate pattern of missing data. Simulated SPSS output 
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 Missing Patternsa  
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44         44 

3      X   47 

4        X 48 

1     X   X 50 

1     X    45 

1    X X    47 

1    X     45 

3       X  47 

1   X    X  49 

1   X      45 

a. Variables are sorted on missing patterns. 

b. Number of complete cases if variables missing in that pattern (marked with X) are not used 

 

Figure 3. Arbitrary pattern of missing data. Simulated SPSS output. 

 

Traditional Approaches to Missing Data 

Missing data threaten the validity of clinical trials, yet receive little attention in the 

literature (O’Neill & Temple, 2012; Wood et al., 2004). Poor approaches for treating missing 

values can produce biased estimates, distorted statistical power, and invalid conclusions (Acock, 

2005; Enders, 2010; Fichman & Cummings, 2003; Graham, 2012). These consequences are 

especially serious for phase III trials, which are intended to provide evidence of the efficacy and 

safety of medical treatments. The use of inadequate missing data methods can also impede the 

construction of valid prognostic models (Burton & Altman, 2004), undermine random 

assignment in RCTs, and violate the ITT approach to the analysis of clinical trial data.  

 Given their potential to compromise inferences from RCTs, a brief overview of 

traditional techniques is warranted. Although a multitude of approaches have been proposed in 

the literature, the focus on cross-sectional designs precludes an exhaustive review of these 

methods. Readers who are interested in procedures that are utilized in repeated measures designs 

(e.g., last observation carried forward) are directed to Allison, 2001; Little and Rubin, 2002; and 
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Schafer and Graham, 2002. Although the following techniques are supported in SPSS, the 

literature is replete with illustrations that show the detrimental effects these approaches have on 

results (e.g., Acock, 2005; Allison, 2001; Baraldi & Enders, 2010; Enders, 2010; Enders & 

Bandalos, 2001; Graham & Schafer, 2002; Olinsky, Chen, & Harlow, 2003; Raghunathan, 2004; 

Schafer & Graham, 2002). 

 Listwise deletion (LD) is also known as complete case analysis and is the default in SPSS 

(and most other standard statistical packages). Although Graham and Donaldson (1993) describe 

special cases where LD did not bias estimates under MAR, most of the literature confirms that 

LD biases estimates while underestimating variances, covariances, and correlations when the 

data do not meet the MCAR assumption (e.g., Enders & Bandalos, 2001; Graham & Schafer, 

2002; Von Hippel, 2004).  Because LD discards every case that has one or more missing values, 

it can drastically reduce sample size. According to Acock (2005), LD typically results in 

discarding 20% to 50% of the data (p. 1015). This loss substantially increases the risk of a Type 

II error and the reduction in power can be devastating, even for large samples with relatively 

small amounts of missing data. Choi et al. (2005) illustrated how the use of LD completely 

obliterates power. In their demonstration, the authors showed how removing 20% of the data 

reduced their sample from 463 to 32 and how removing 50% of the data reduced their sample 

from 463 to 1. As the nondiscarded cases may not be representative of the population, LD 

undermines external validity (Allison, 2001; Enders, 2010; Schafer & Graham, 2002) and 

violates the ITT approach to the analysis of clinical trial data. 

 Pairwise deletion (PD) is also known as available case analysis and uses the observed 

data for each analysis without attempting to restore the rectangular form of the data matrix 

(which in some procedures, like structural equation modeling, may prevent a solution). 
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According to McKnight et al. (2007), “large discrepancies between the number of available cases 

for each of the variables in the analysis often produce interpretation problems that are 

insurmountable” (p. 99). Because the appropriate degrees of freedom for tests of significance are 

ambiguous, the estimated standard errors and test statistics produced by conventional software 

are biased and tend to increase Type II errors (Allison, 2001). In models involving only one or 

two variables (e.g., t test, one way ANOVA), LD and PD are identical methods. 

 Mean substitution (MS) replaces missing values with the mean of observed values. 

According to Acock (2005), “the mean substitution approach is probably the worst solution to 

missing values because it attenuates variance and often provides poor imputed values” (p. 1025). 

Because each imputed value falls directly on a straight line with a slope of zero, MS can 

dramatically attenuate correlations between variables (Baraldi & Enders, 2010). The appreciable 

bias observed when MS is used should cause concern because it can lead to a substantial 

reduction in power (Schlomer, Bauman, & Card, 2010). Schlomer et al. (2010) illustrated how 

the use of MS would have led to the incorrect conclusion that there was no difference between 

two treatments when there was actually a large difference between the arms. 

 Regression imputation (RI) replaces missing values with predicted values obtained from 

a linear regression equation without incorporating a stochastic component to account for 

uncertainty. Consequently, RI underestimates variance and lacks the variability that would be 

present in the hypothetically complete dataset. Because imputed values fall directly on a straight 

line with a nonzero slope, RI overestimates correlations (Baraldi & Enders, 2010), even when the 

data are MCAR (Enders, 2010).  

Despite the fact that Wilkinson and the Task Force on Statistical Inference (1999) 

declared LD and PD “among the worst methods available for practical applications” (p. 598), 
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these techniques continue to dominate the literature – even in high-impact medical journals with 

stringent statistical review policies. Wood et al. (2004), for example, reviewed 71 RCTs 

published between July 2001 and December 2001 in four prestigious medical journals (i.e., 

Journal of the American Medical Association, British Medical Journal, The Lancet and New 

England Journal of Medicine). The authors found that LD was used in 92% of the cross-sectional 

and 46% of the repeated measures designs, and noted that the use of this technique has the 

potential to cause substantial bias in treatment effect estimates. The findings of Peugh & Enders 

(2004) also corroborate the popularity of LD. In their review of 23 applied research journals 

published in 1999 and 2003, they found that 96% of the studies used LD or PD.  

 The use of LD also extends to medical research conducted with strict oversight. Harel, 

Pellowski, and Kalichman (2012) reviewed 57 RCTs maintained by the HIV/AIDS Prevention 

Research Synthesis Project at the Centers for Disease Control in June 2010 and found that LD 

was used in 74% of the studies. Under relaxed assumptions, the authors “expect only 12% of the 

studies to report unbiased results” (p. 1382). 

Klebanoff and Cole (2008) attempted to document the use of MI procedures appearing in 

the epidemiologic literature (i.e., American Journal of Epidemiology, Annals of Epidemiology, 

Epidemiology, and International Journal of Epidemiology) from January 2005 to December 

2006, but the rarity of MI use precluded analysis. In a similar attempt to document the transition 

from traditional methods to more principled methods, Mackinnon (2010) recorded the number of 

MI studies appearing in four medical journals (i.e., Journal of the American Medical 

Association, New England Journal of Medicine, British Medical Journal, and The Lancet) at two 

time points (before 2005 and from 2005 to 2008). Although Mackinnon reported that the use of 

MI in clinical trials has “risen substantially” (2010, p. 586), the increase was based on an 
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extremely small number of publications (e.g., an increase from 1 RCT appearing in the New 

England Journal of Medicine before 2005 to 4 appearing from 2005 to 2008). 

The Lack of Attention to Power in the Literature 

 Statistical power (rejecting a false null hypothesis) has received less attention than it 

deserves (Cohen, 1962, 1988, 1990; Murphy et al., 2009). The almost total lack of attention to 

Type II error (failure to reject a false null hypothesis) and its consequences have “worrying 

implications” (Williams & Seed, 1992, p. 321). In clinical research, a high probability of Type II 

error can lead to the underreporting of serious adverse events (e.g., death, major bleeding, 

serious infections) and erroneous conclusions of equivalent toxicity (Tsang et al., 2009). The 

conclusions derived from underpowered studies are often contradictory (Howard, et al., 2000; 

Maxwell, 2004; Rossi, 1990) and make it difficult to draw coherent clinical inferences from the 

literature (Button et al., 2013; Maxwell, 2004). Not only do underpowered studies lead to a 

confusing literature, they also adversely affect future research by creating a reference literature 

that contains biased effect size estimates (Maxwell, 2004). Failing to detect the effects of 

treatments or interventions may also contribute to the premature termination of potentially 

valuable research (Cohen, 1962; Williams & Seed, 1993; Yuen & Pope, 2008) and this is 

especially true when Type II errors are committed in exploratory studies involving innovative 

designs or small treatment effects (Chase & Chase, 1976; Freiman et al., 1978; Woods et al., 

2006). Rosenthal (1990) provided an example that demonstrates how aspirin would have been 

deemed ineffective in preventing heart attacks (with an r2 = .001) if the trial had not been 

sufficiently powered. 

Although the literature is replete with warnings about the potentially disastrous impact of 

underpowered studies, recommendations by Wilkinson and the Task Force on Statistical 
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Inference (1999) to improve statistical practice have gone unheeded. A review of the literature 

showed that RCTs are often inadequately powered to detect iatrogenic effects.  

In a trial comparing fixed-dose, weight adjusted unfractionated heparin with low 

molecular weight heparin for the treatment of venous thromboembolism, Kearon et al. (2006) 

failed to find a significant difference in the frequency of major bleeding events despite observing 

twice as many events in the low molecular weight group (12 out of 352) than in the 

unfractionated group (6 out of 345). A subsequent evaluation of the trial revealed that the power 

to detect the difference in the proportions was .30 (Tsang et al., 2009). 

The failure of Kearon et al. (2006) to detect adverse effects is not uncommon. In an 

investigation into the cognitive effects of subthalamic nucleus deep brain stimulation in 

Parkinson’s disease, Woods et al. (2006) reviewed 30 studies published between 1997 and 2004 

and found that only 7% of the studies demonstrated adequate power (≥ .80) to detect the 

cognitive decline associated with large (f = .40) effects.  

In a similar meta-analysis, Tsang et al. (2009) reviewed six RCTs published between 

January 2006 and March 2007 to determine if RCTs were sufficiently powered to detect serious 

adverse events. Their results revealed statistical power levels that ranged from .07 to .37. The 

authors noted that erroneous conclusions of equivalent efficacy and toxicity were being drawn 

(p. 610). 

A review of the literature has also shown that RCTs are often inadequately powered to 

detect treatment effects. Yuen & Pope (2008) investigated the power of RCTs in the treatment of 

non-renal SLE. Their review of 30 negative trials published between 1975 and 2007 revealed a 

mean statistical power of .25. The authors found that only one of the RCTs demonstrated 
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adequate power ( .80). They concluded that useful therapies could be discarded (p. 1369) and 

that “the generalizability of SLE trials was modest at best” (p. 1370). 

Pike & Leith (2009) also found that RCTs are underpowered. They examined 29 

superiority trials appearing in the orthopedic literature from 1994 to 2007. Their results revealed 

a mean statistical power of .41.  The authors concluded that none of the trials were sufficiently 

powered to detect a small treatment effect, two (6.9%) were sufficiently powered to detect a 

medium treatment effect, and 13 (44.8%) were sufficiently powered to detect a large treatment 

effect.  

In a comprehensive examination of power in the neuroscience field, Button et al. (2013) 

reviewed 49 meta-analyses (comprised of 730 primary studies) published in 2011 and found that 

the median statistical power was .21. The authors concluded that “there is now substantial 

evidence that a large proportion of the evidence reported in the scientific literature may be 

unreliable” (p. 374). 

In an older investigation of Type II error, Brown, Kelon, Ashton, and Werman (1987) 

examined 13 negative RCTs appearing in the emergency medicine literature from 1972 to 1984 

and found that the statistical power ranged from .03 to .40. They noted that for the endpoints 

examined, a sample size of up to 450 times larger than that used would have been required to 

detect a clinically important difference. According to the authors, “this raises serious ethical 

issues because study subjects were enrolled in a trial that at the outset was doomed to be 

negative” (p. 187).  

To assess changes in statistical practice, Moher et al. (1994) compared 102 negative 

RCTs published over a 20-year period (1975, 1980, 1985, and 1990) and concluded that the 
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statistical power of RCTs has not improved over time. Current meta-analyses (e.g., Button et. al., 

2013; Yuen & Pope, 2008) collaborate Moher et al.’s (1994) findings. 

The prevalence of underpowered RCTs in the literature may result from a 

misunderstanding of alpha, beta, and power by the clinical community (Cohen, 1992). To clarify, 

a Type I error (α) is the probability of finding a statistical difference between treatment arms 

when the treatments are equivalent (rejecting a true null hypothesis). A Type II error (β) is the 

probability of not finding a statistical difference between treatment arms when the treatments are 

not equivalent (failure to reject a false null hypothesis). Power is the probability of detecting a 

difference between treatment arms when the treatments are not equivalent (rejecting a false null 

hypothesis) and can be defined as 1 – β.  

Power is a function of alpha (α), sample size (n), and effect size (ES). Increasing any of 

these parameters will increase the power of a statistical test. Cohen (1965) recommended that 

power = .80 (β = .20) when α = .05. This proposes a 4:1 : ratio. According to Cohen (1992), 

“a materially smaller value than .80 would incur too great a risk of a Type II error. A materially 

larger value would result in a demand for n that is likely to exceed the investigator’s resources” 

(p. 156). The following illustrations, created with G*Power 3 (Faul, Erdfelder, Lang and 

Buchner, 2007), show how reducing n1, n2 from 60, 60 (Figure 4) to 10, 10 (Figure 5), at alpha 

.01, increases the probability of committing a Type II error (β) from 4% to 83% when a large 

(0.80) treatment effect is present. 

Cohen (1988) suggested a number of conventions for describing treatment effects as 

small, medium or large. The recommended effect sizes (d) for the independent samples t test are 

0.2σ for a small effect, 0.5σ for a medium effect, and 0.8σ for a large effect. Sawilowsky (2009) 
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extended Cohen’s work to include very small (0.01σ), very large (1.2σ), and huge (2.0σ) effect 

sizes.  

 

Figure 4. Two-tailed t test, n1, n2 = 60, 60; d = 0.80; α = .01, power = .959 

 

 

 

Figure 5. Two-tailed t test, n1, n2 = 10, 10; d = 0.80; α = .01, power = .172 

  

Multiple Imputation 

Multiple imputation (MI) is a promising approach to treating missing data. First proposed 

by Rubin (1976) and elaborated in 1987, MI replaces missing values with m > 1 sets of imputed 

values, resulting in m complete datasets. Each of the datasets is analyzed and the results are 

combined to yield one set that reflects both within- and between-imputation uncertainty. By 

accounting for the variability between imputations, MI allows the uncertainty in the imputation 
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process to be quantified and integrated into the analysis, which allows it to provide accurate 

inferential conclusions (Schlomer et al., 2010). 

A plethora of simulation studies show MI estimates to be unbiased (e.g., Choi et al., 

2005; Collins, et al., 2001; Graham & Schafer, 1999; Raghunathan et al., 2001; Van Buuren et 

al., 2006). A simulation by Choi et al. (2005) showed that MI provided parameter estimates that 

came close to those of the population with 50% of the data missing. These results were 

corroborated by Marshall, Altman, Royston, and Holder (2010) who also reported MI to be 

useful when up to 50% of the values were missing. Although these results are encouraging, there 

may be an upper limit to the amount of missing data that can be tolerated by MI. Barzi and 

Woodward (2004) revealed inflated variability and convergence problems with some MI 

techniques when more than 60% of the observations had missing data (with varying results 

depending upon the imputation technique).  

Nonnormality. MI procedures are somewhat robust against violations of normality (as 

far as bias is concerned). According to Van Buuren (2012), the effect of nonnormality is 

generally small for measures that rely on the center of the distribution but could be substantial 

for other types of estimates. Demirtas et al. (2008) found that with a fairly large sample (n > 

400), MI performed reasonably well when the normality assumption was clearly violated (i.e., 

flatness of the density, heavy tails, non-zero peakedness, skewness, and multimodality), even 

when there was a high percentage (75%) of missing data. Graham and Schafer (1999) conducted 

a simulation in which highly nonnormal variables were imputed under normality assumptions 

with no transformations or rounding and reported excellent performance for linear regression. 

Von Hippel (2013a) imputed skewed variables from a normal model and found that they 

produced acceptable estimates for means, variances, and regressions. A simulation of several 
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sequential regression MI methods (and extensions which adjust for nonnormal error terms) found 

that when the error distribution was flat or moderately heavy tailed, MI was able to estimate 

marginal means and regression coefficients, but when the distribution was strongly heavy tailed, 

the regression coefficients were biased (He & Raghunathan, 2009).  

Despite MI’s potential for poor performance under conditions of extreme skew, strong 

concerns over the use of transformations (in the context of MI) have been raised (e.g., Demirtas 

et al., 2008, p. 82 – 83). After testing several methods for adapting a normal imputation model to 

accommodate skew (e.g., transform, truncate or round), Von Hippel (2013a) found that none of 

the modifications reliably reduced bias (and some modifications made the bias much worse). 

Enders (2010) pointed out that because MICE relies on the associations among variables and 

transformations can alter the covariate structure of the data, transforming (then back 

transforming) the data could affect the accuracy of the imputations and resulting estimates. 

MNAR. MI has been shown to perform reasonably well under the MNAR condition 

(Collins et al., 2001; Sinharay et al., 2001; Carpenter, Kenward, & White, 2007) with a moderate 

amount (25%) of missing data (Buhi et al., 2008; Collins, et al., 2001). Under more extreme 

conditions (i.e., the missing data rate exceeds 25% or in the case of a linear regression r > .40), 

the form of the mechanism (whether the probability to be missing was linear or was more likely 

to occur in the extremes) determined which parameters were affected (Collins et al., 2001). The 

impact of MNAR can be reduced by including auxiliary variables that account for missingness in 

the imputation model (Moons et al, 2006; Van Buuren, 2012) or by using a nonignorable 

imputation model (Van Buuren, 2012). 

Small Samples. Although MI has been successfully used in large epidemiologic and 

biomedical datasets (e.g., Centers for Disease Control and Prevention AIDS surveillance system, 
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National Health and Nutrition Examination Survey, National Medical Expenditure Survey), its 

small sample properties are unclear. Graham and Schafer (1999) showed that MI performed well 

when samples were small (n = 50) and a large proportion (50%) of the data were missing. In fact, 

some of the analyses based on MI data were as good as the same analyses performed on 

complete data (Graham & Schafer, 1999). Barnes, Lindborg and Seaman (2006) showed that 

common regression based MI methods provided close to ideal CI coverage for 20% dropout in 

small (n = 20, 30, 50) clinical trials, but some methods fell short when the percentage of missing 

data increased to 30 or 40%. Von Hippel (2013b) demonstrated that bias occurred when the 

samples were small (n = 25), there was a large amount of missing data (50%), and the missing 

values followed an exceptionally challenging pattern. Demirtas et al. (2008) also showed that MI 

produced biased estimates when samples were small (n = 40) and a large amount (75%) of data 

were missing. Simulations by Kim (2004) showed that decreasing the sample size from 200 to 

20, increased the variance of point estimators by a factor of 10 or more depending upon the 

proportion of missing data.  

Multiple Imputation in Practice 

 Initial multiple imputation procedures assumed a large joint model (e.g., a joint normal 

distribution). As almost all datasets have mixtures of incomplete categorical and continuous 

variables, this assumption rarely holds in practice. MICE is a flexible alternative to joint models 

that does not assume that the data have an underlying normal distribution (Johnson & Young, 

2011; Schafer, 1999; Van Buuren, 2012). It also does not assume that nonresponse is ignorable 

(Schafer, 1999). In principal, imputations can be created under any missing data mechanism and 

the inferences will be valid under that mechanism (Schafer, 1999). The MI procedure has three 

phases: imputation, analysis, and pooling. 
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 The imputation phase. During this phase, the MI procedure creates several complete 

versions of the dataset by iteratively replacing missing values with imputed values. The MICE 

approach accomplishes this by specifying an individual regression model for each variable using 

the other variables in the model as predictors p (Yjmis | Yjobs ,Y-j, R). In contrast to joint modeling, 

MICE specifies the multivariate distribution p (Y, X, R | θ) through a set of conditional densities   

p (Yj | X,Y-j, Rϕj). The conditional density is used to impute Yj given X, Y-j and R which allows 

each variable to be modeled according to its distribution. SPSS uses logistic regression to impute 

incomplete binary and categorical variables, and linear regression or predictive mean matching 

(a variant of linear regression that matches imputed values computed by the regression model to 

the closest observed value) to impute continuous variables.  

 There are several ways to implement imputation under conditionally specified models. 

The MICE algorithm starts with simple random draws from the marginal distribution and 

sequentially imputes each variable in the order specified in the variable list (e.g., by missing 

value rates) until the iteration is complete and all of the variables have been imputed. The 

process repeats using the Gibbs sampling procedure (a Bayesian simulation technique that 

samples from the conditional distributions in order to obtain samples from the joint distribution) 

for a specified number of iterations (in SPSS, the default is 10). A number of simulations have 

shown that unbiased estimates and appropriate coverage is obtained after 5 – 10 iterations 

(Raghunathan et al., 2001; Van Buuren, 2012; Van Buuren & Groothuis-Oudshoorn, 1999; 

White, Royston, & Wood, 2011). When the specified number of iterations has been reached, the 

distribution of parameters governing the imputations should have converged. At convergence, 

the complete dataset is retained and the entire process is repeated m times resulting in m 

complete datasets being stacked with the original incomplete dataset in the SPSS data file.  
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When choosing variables to include in the imputation model, a simulation by Collins et 

al. (2001) showed that an inclusive strategy is superior to a restrictive strategy “because there 

appear to be few risks associated with it and potentially substantial gains” (p. 350). Although 

there has been some disagreement on the subject (see Hardt, Herke & Leonhart, 2012), the 

prevailing view is that the imputation model should include: (a) target variables (variables that 

will be used in the analysis phase); (b) auxiliary variables (variables intended to predict 

missingness or improve the model, including variables that preserve correlations and 

interactions; Collins et al., 2001; Piggot, 2001; Rubin, 1996; Schafer & Olsen, 1998; Sinharay et 

al., 2001); (c) sample variables (variables that describe aspects of clustered, stratified or 

longitudinal data); and (d) outcome variables (Collins et al., 2001; Enders, 2010; Little, 1992; 

Moons et al., 2006). 

Although it seems counterintuitive, including outcome variables in the imputation model 

is necessary to reduce bias when imputing predictor variables and does not overestimate the 

regression coefficients between outcomes and predictors (Moons et al., 2006). Failing to include 

variables that mediate between outcomes and predictors can also result in bias and loss of power 

(Collins et al., 2001; Enders, 2010). When interactions are not modeled, the effects of the 

correlations (and interactions) between the variables will be biased towards zero (Graham, 2009; 

Sterne et al., 2009). Variables with missing information should also be included in the 

imputation model. Although this also seems counterintuitive, simulations have shown that 

auxiliary variables with missing values are nearly as effective in reducing bias as those with no 

missing values (Enders, 2010). It should be noted, however, that including variables with large 

fractions of missing information can slow or prevent convergence (Van Buuren & Groothuis-

Oudshoorn, 1999).  
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Although including a diverse set of variables in the imputation model may reduce bias, 

there seems to be an upper limit to the number of variables that can be modeled. Chained 

equations break down at a 1:1 ratio of variables to cases, even with small fractions of missing 

data (Hardt et al., 2012) and can lead to instability (He & Raghunathan, 2009) or cause the 

program to fail (White et al., 2011). Hardt et al. (2012) suggested that the ratio of variables to 

cases (with complete data) should not go below 1:3. Van Buuren and Groothuis-Oudshoorn 

(1999) recommended selecting a suitable subset of data that contains no more than 15 – 25 

variables. Enders (2010) suggested that a reasonable goal may be to maximize the squared 

multiple correlation between auxiliary variables and target variables using as few auxiliary 

variables as possible. As variables with low correlations ( .40) have a negligible affect on 

power (Enders, 2010), a good strategy may be to exclude auxiliary variables with low 

correlations and high fractions of missing information. 

Rubin (1987) provided a diagnostic measure that estimates the influence of missing data 

on parameter estimates. Higher fractions of missing information (FMI or 𝛾) represent higher 

uncertainty about estimates (and their resulting conclusions). The estimated FMI can be defined 

as 

𝛾 =
𝑟 + 2/(𝑑𝑓 + 3)

𝑟 + 1
 

where r (the relative increase in variance due to the missing data) is 

𝑟 =
1 + (𝑚−1)𝐵

𝑈̅
 

and df (based on an approximate t distribution) is 

𝑑𝑓 = (𝑚 − 1)[1 + 𝑟−1] 2 
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Table 2 illustrates the proportional increase in the standard error for different fractions of missing 

data (γ) given the number of imputations (m). The slight decrease in standard error attributable to 

an increase in m suggests that there is little benefit to using m > 5. 

Table 2 

Proportional Increase in Standard Error for m and γ  

        γ    

m 0.10 0.20 0.30 0.40 0.50 0.60 0.70 

3 1.02 1.03 1.05 1.06 1.08 1.10 1.11 

5 1.01 1.02 1.03 1.04 1.05 1.06 1.07 

10 1.00 1.01 1.01 1.02 1.02 1.03 1.03 

20 1.00 1.00 1.01 1.01 1.01 1.01 1.02 

Note: Table was computed using Excel. 

 Determining the number of imputations to generate can be based on the relative 

efficiency (RE) desired. Rubin (1987) showed that the efficiency of an estimate based on m, 

relative to one based on an infinite number of imputations, is 

𝑅𝐸 = (1 +
𝛾

𝑚
)

−1

  

Table 3 

Efficiency as a Function of m and γ 

 

           γ     

m 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 

3 0.97 0.94 0.91 0.88 0.86 0.83 0.81 0.79 0.77 

5 0.98 0.96 0.94 0.93 0.91 0.89 0.88 0.86 0.85 

10 0.99 0.98 0.97 0.96 0.95 0.94 0.93 0.93 0.92 

20 1.00 0.99 0.99 0.98 0.98 0.97 0.97 0.96 0.96 

Note: Table was computed using Excel. 
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 Table 3 shows the relative efficiency for γ given m. Although the table demonstrates that 

an increase in m can be used to compensate for a large γ, it also shows that modest values of m 

result in parameter estimates that are nearly fully efficient. Because MI enlarges the between-

imputation variance B by a factor 1/m before calculating the total variance in T = U + (1 + m-1) 

B, the classic advice has been that 3 – 5 m is adequate (Rubin, 1987; Schafer, 1997; Schafer & 

Olsen, 1998). Recently, however, there has been some disagreement in the literature. 

Von Hippel (2005) evaluated the impact of different fractions of missing data and found 

that 10 imputations produced a standard error that was 2% larger than an infinite number of 

imputations when a large percentage (40%) of values were missing. Graham, Olchowski and 

Gilreath (2007) investigated the effect of m on the statistical power of a test to detect a small     

(< 0.1) effect and suggested that m > 5 may be needed for small effect sizes, large fractions of 

missing data, and small sample sizes. Bodner (2008) systematically explored the variability of 

the width of the 95% CI, the p value and λ (the proportion of variance attributable to the missing 

data) under various m and recommended that m be based on the percentage of cases that are 

incomplete (a conservative estimate of λ). White, Royston and Wood (2011) concurred with 

Bodner’s (2008) suggestion that m be at least equal to the percentage of incomplete cases. Van 

Buuren and Groothuis-Oudshoorn (1999) suggested setting m to the average percentage of 

missing data but added that “the substantive conclusions are unlikely to change as a result of 

raising m beyond m = 5” (p. 51). Johnson and Young (2011) corroborate Van Buuren’s 

statement. They demonstrated that m = 5 resulted in the same substantive conclusions as m = 25, 

even when auxiliary variables were removed from the model. 

Although the benefits of increasing m beyond 5 are still being debated, imputing a large 

number of datasets may not be practical. Imputing a single dataset with a large model or a large 
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fraction of missing information requires considerable computation time and can prevent 

convergence (Graham, 2012). 

Another consideration when imputing data is whether or not to define constraints. In 

SPSS, constraints can be used to (a) restrict the range of imputed values, (b) exclude variables 

from imputation (e.g., variables with large fractions of missing values and variables that have 

values that are missing by design), and (c) specify rounding rules (see Horton, Lipsitz, & Parzen, 

2003, for caveats). In situations where a subset of cases is believed to be inherently different 

from the rest of the sample, values may be imputed separately using different (split) models 

(Rubin, 1987). Although the role of the variable can be confined, it is not necessary to specify 

whether variables are independent (predictor) or dependent (outcome). Unlike methods that 

exclude cases with missing predictor variables, MI uses observed values to predict missing 

values without regard to each variable’s role in the analysis phase (Enders, 2010). 

After a specified number of iterations is reached, the distribution of parameters governing 

the imputations (e.g., the coefficients in the regression models) should have converged (such that 

the order in which the variables were imputed no longer matters). Plotting the variable means 

and standard deviations at each iteration and imputation can help assess model convergence. 

When convergence is reached, the variance between the sequences will not be larger than the 

variance within the sequences and the streams will be intermingled without showing any definite 

trends (Van Buuren, 2012). Nonconvergence can occur when (a) a large number of variables are 

modeled, (b) a large number of missing values are imputed, (c) analysis variables are left out of 

the imputation model, or (d) the matrix is not positive definite (Graham, 2012). 

 The Analysis Phase. In this phase, each imputed dataset is analyzed using standard 

statistical procedures. As the simulated design for this study is a parallel group RCT, the data 



 

 

30 

will be analyzed using the t test. William Sealy Gosset (Student, 1908) introduced the t 

distribution to allow the probabilities of small samples to be computed when the population 

standard deviation is unknown. Since its introduction, the t test has played an integral role in 

evaluating the efficacy of medical treatments. In his seminal paper, Gosset introduced the t test 

by comparing the number of hours of sleep patients gained when treated with dextro- and laevo- 

forms (optical isomers) of the drug hyoscyamine hydrobromide and concluded that the laevo- 

isomer was more effective. The t test has since become the most used procedure for comparing 

group means in clinical research (Bridge & Sawilowsky, 1999). The t test can be defined as 

𝑡 =
𝑋̅1 − 𝑋̅2

√[
𝑠1

2(𝑛1 − 1) + 𝑠2
2(𝑛2 − 1)

𝑛1 + 𝑛2 − 2 ] [
𝑛1 + 𝑛2

𝑛1𝑛2
]

 

with 

𝑑𝑓 = 𝑛1 + 𝑛2 − 2 

 Statistical tests, including the t test, are considered robust when they maintain a Type I 

error rate close to the nominal level of significance while maintaining statistical power (Lix, 

Keselman & Keselman, 1996). The t test has two major assumptions: normality and 

homogeneity of variance. 

Although Wilcox (1998) asserted that a violation of the normality assumption could 

result in a substantial loss of power (see his example where a small departure from normality 

reduced the power of the t test from .96 to .28), Zimmerman (1987) found the t test to be scarcely 

affected by nonnormality. Later work by Sawilowsky and Blair (1992) demonstrated that the t 

test produced power rates very similar to the levels expected from normal curve theory 

regardless of population shape, sample size, or effect size. Empirical evidence also demonstrates 

that the t test’s Type I error rate is maintained at the nominal level when sample sizes are 
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approximately equal, sample sizes are fairly large (n > 25 according to Boneau, 1960), and tests 

are two-tailed rather than one-tailed (Boneau, 1960; Huber, 1972; Sawilowsky and Blair, 1992). 

In practice, the normality assumption is far from tenable. Datasets in the medical (Yuan 

& Bentler, 1999) and psychological (Bradley, 1977; Micceri, 1989) literature are likely to be 

skewed and heavy tailed. In a comprehensive study of the distributional characteristics of large 

datasets (almost 70% of the datasets involved 1,000 or more cases), Micceri (1989) found that 

none of the 440 datasets investigated passed the Kolmogrov-Smirnov test of normality. Nearly 

half (49.1%) of the datasets had at least one heavy tail and almost three quarters (71.6%) were 

classified as being moderately to extremely asymmetric (some to the point of being 

exponentially distributed). 

Work by Zimmerman (1987) demonstrated that the t test is relatively robust to violation 

of the homogeneity assumption when samples sizes are equal. If sample sizes differ, then 

inequality of variances can have a pronounced effect on significance levels and on the 

probability of Type I error (Zimmerman, 1987). In this case, the t test either becomes 

conservative or liberal depending upon the relationship between sample size and population 

variance. 

When the t test is performed, SPSS automatically provides the results for Levene’s 

(1960) test for equality of variances. If the test is significant, the variances are not equal. In 

RCTs, the homoscedasticity assumption is often violated because the treatment group is more 

likely to experience greater variability in response to the intervention than the control group.  

The pooling phase. During this phase, the results of the individual analyses are 

combined using mathematical rules developed by Rubin (1987). Most of the statistical 

procedures, available in SPSS, can produce pooled parameter estimates and standard errors for 
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multiply imputed datasets. SPSS pools output at two levels: naïve and univariate. At the naïve 

level only the pooled parameter is available. At the univariate level, the pooled parameter and its 

standard error, test statistic, effective degrees of freedom, p-value, CI, and pooling diagnostics 

(FMI, RE, relative increase in variance) are available. The t test procedure, in SPSS, supports 

mean pooling at the univariate level and n pooling at naïve level. Statistics that are not estimators 

(e.g., likelihood ratio, chi-square, p-value) cannot be combined and SPSS will not allow those 

analyses to pool. According to notation in IBM SPSS 20 Algorithms (2011), the final estimate of 

𝑄 is simply the average of the individual point estimates and can be defined as 

𝑄̅ =
1

𝑚
∑ 𝑄̂𝑖

𝑚

𝑖=1

 

 

where 𝑄̂ is the parameter estimate from the ith dataset and m is the number of imputations. 

The estimated total variance is 

𝑇 = 𝑈̅ + (1 +
1

𝑚
 ) 𝐵 

where 𝐵 (the between imputation variance) is 

𝐵 =
1

𝑚 − 1
∑(𝑄̂𝑖 − 𝑄̅)

𝑚

𝑖=1

(𝑄̂𝑖 − 𝑄̅)′ 

and 𝑈̅ (the within imputation variance) is 

𝑈̅ =
1

𝑚
∑ 𝑈𝑖

𝑚

𝑖=1

 

with 

𝑑𝑓 = (𝑚 − 1)[1 + 𝑟−1] 2 

 Unlike other statistical contexts, the df in MI is not affected by n. Barnard and Rubin 

(1999) noted that the above df equation can produce values that are larger than the df in the 
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complete data and developed an adapted version for small samples. There is a void in the MI 

literature (as well as the SPSS documentation) that discusses this solution and it is not clear 

whether SPSS makes this adjustment.  

It should be noted that missing elements in 

      {𝑄̂𝑖, 𝑈𝑖}  𝑖=1
𝑚  

are excluded from the calculations.  

The p-value for testing H0: Q = Q is 

𝑝 = Pr (𝐹𝑘,𝑣 ≥ 𝐹) 

where 

𝐹 =
1

𝑘
(𝑄̅ − 𝑄0)𝑇𝑇̃ − (𝑄̅ − 𝑄0) 

𝑘 = 𝑟𝑎𝑛𝑘(𝑇̃) 

𝑣 = 𝑣̃ 
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CHAPTER 3 METHODS 

 The National Academy of Science (2010) identified numerous high priority areas for 

missing data research that are echoed in the literature. Several of those areas will be addressed by 

systematically investigating the impact of MI on the rejection rate of the independent samples t 

test under a range of conditions that reflect the interplay of complexities that arise when 

analyzing differences between treatment arms in RCTs. More specifically, a factorial design that 

includes eight sample sizes, five effect sizes, three fractions of missing data, three distributions, 

and two alpha levels will be used to determine if MI impacts Type II error in parallel group 

RCTs. Fully crossed, this design represents 720 distinct conditions.  

Although enormous amounts of computational resources are required to conduct MI 

simulations (see Hardt et al., 2012, for an example of a simulation of 100 cases that required 

more than 200 hours of computing time on a 6 physical core PC optimized for simulations), each 

of the 720 conditions will be replicated 1,000 times.  

Data Generation 

 Two samples (X1, Y) of sizes (n1, n2) = (10, 10), (20, 20), (30, 30), (40, 40), (60, 60), (10, 

30), (20, 60), (30, 90) will be drawn from the Normal (0, 1), Chi-square (df = 1) and t (df = 3) 

distributions. The samples will simulate a parallel group RCT with X1 serving as the control 

group and Y serving as the treatment group. As pilot trials can have samples as small as n = 20 

(Barnes, Lindborg & Seaman, 2006), the eight sample sizes proposed are intended to reflect the 

small balanced and unbalanced designs likely to occur in clinical practice. Several of the sample 

sizes also mirror those used in past simulation studies that investigated the robustness of the t test 

(e.g., Sawilowsky & Blair, 1992; Sawilowsky & Hillman, 1992). A third variable (X2) with a .50 

correlation with Y will serve as an auxiliary variable in the imputation model.  
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 The control sample (X1) will be generated using the distribution random variable function 

in SPSS (version 22). The treatment sample (Y) and auxiliary variable (X2) will be generated via 

algorithms presented by Headrick and Sawilowsky (2000) to solve the Fleishman (1978) 

equation for a .50 correlation. The Fleishman method was chosen because it was shown to 

generate average values of intercorrelations closer to population parameters than competing 

procedures for skewed distributions and small sample sizes (Headrick & Sawilowsky, 2000).  

Table 4 

Solutions to the Fleishman Equation 

Distribution μ σ γ1 γ2 a b d 

Normal Distribution 0 1 0 0 0 1 0 

Chi-square (df=1) 1 √2 √8 12 -.5207 .6146 .02007 

t (df=3) 0 √3 0 17 0 .3938 .17130 

Note. γ1 = skew, γ2 = kurtosis 

First, the constants for each distribution (presented in Table 4) will be used to solve for rxy where 

𝑟𝑥𝑦 = 𝑟2(𝑏2 + 6𝑏𝑑 + 9𝑑2 + 2𝑎2𝑟2 + 6𝑑2𝑟4) 

Then, the SPSS random variable function will be used to generate three random normal variates 

(Z1, Z2, Z3) which will be used to solve for Xa and Ya where 

𝑋𝑎 = 𝑟(𝑍1) + (𝑍2)√1 − 𝑟2  

and  

𝑌𝑎 = 𝑟(𝑍1) + (𝑍3)√1 − 𝑟2 

After which, Xa and Ya will be used to solve for Xb and Yb where 

𝑋𝑏 = 𝑎 + 𝑏𝑋1 + (−𝑎)𝑋1
2 + 𝑑𝑋1

3 

and 

𝑌𝑏 = 𝑎 + 𝑏𝑌1 + (−𝑎)𝑌1
2 + 𝑑𝑌1

3 
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Finally, Xb and Yb will be transformed back into their distribution metric using 

𝑋𝑜 = 𝜎𝑋 + 𝜇 

and 

𝑌𝑜 = 𝜎𝑋 + 𝜇 

 A treatment effect will be will simulated by applying the algorithm YT = YO + k where k 

is equal to a constant treatment effect and  reflects the standard deviation of the distribution 

under investigation (Table 4). Proposed ES include small (0.2σ), medium (0.5σ), and large (0.8σ) 

as suggested by Cohen (1988) as well as very large (1.2σ) and huge (2.0σ) as proposed by 

Sawilowsky (2009). Despite warnings from Cohen (1988) about these values becoming de facto 

standards for research, they are proposed to facilitate comparisons across studies and allow for 

meta-analysis.  

Table 5 

 

Number of Values Treated as Missing 

 

                                       Sample Size (YT) 

Fraction of Missing Data 10 20 30 40 60 90 

0.10  1   2   3   4   6   9 

0.30  3   6   9 12 18 27 

0.50  5 10 15 20 30 45 

 

 Table 5 presents the number of values (for variable YT) that will be defined as missing. 

To simulate a monotone missing data pattern, 10%, 30%, or 50% of the YT values will be deleted 

using random uniform numbers. If the rank of the generated number is equal to or less than the 

percentage specified, the data point will be deleted.  
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Parameters 

Missing values will be imputed using SPSS version 22. Parameters will be set to 10 

iterations and m = 5 which represent the defaults in SPSS. According to Van Buuren (2012), the 

software defaults are often reasonable. The defaults were also chosen because they are most 

likely to be used by practitioners unfamiliar with MI. The analyses will be conducted using a 

two-tailed independent samples t test. The combining step will be performed by SPSS using the 

formulas presented in the literature review. The Python 2.7 programming language will be used 

to repeat the entire process 1,000 times for each combination of factor levels and report the 

rejection rates for the .01 and .05 alpha levels 
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CHAPTER 4 RESULTS 

 Tables 6 – 10 present the number of rejections out of 1,000 for the Normal distribution 

under varying sample sizes, effect sizes, fractions of data imputed, and alpha. The Normal 

distribution has two parameters: a location parameter (μ) and a scale parameter (σ). The 

distribution was simulated using a location parameter of 0 and a scale parameter of 1. 

    
 

Figure 6. Normal distribution (0, 1). Created using SPSS syntax. 

 

The probability density function for the Normal distribution (Figure 6) is 

1

𝜎√2𝜋
𝑒 −

(𝑋−𝜇)2

2𝜎2  
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Table 6 

 

Small (0.2σ) Treatment Effect Rejection Rates for the Normal Distribution  

 

  α = .01  α = .05 

  Fraction of data imputed  Fraction of data imputed 

n1, n2  0.100 0.300 0.500  0.100 0.300 0.500 

10, 10  0.031 0.034 0.023  0.068 0.082 0.064 

20, 20  0.028 0.023 0.020  0.103 0.104 0.095 

30, 30  0.036 0.032 0.023  0.138 0.107 0.101 

40, 40  0.042 0.043 0.034  0.165 0.139 0.116 

60, 60  0.067 0.058 0.056  0.195 0.164 0.120 

10, 30  0.036 0.019 0.025  0.067 0.084 0.076 

20, 60  0.027 0.034 0.039  0.148 0.126 0.100 

30, 90  0.048 0.045 0.050  0.137 0.152 0.150 
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Table 7 

 

Medium (0.5σ) Treatment Effect Rejection Rates for the Normal Distribution 

 

  α = .01  α = .05 

  Fraction of data imputed  Fraction of data imputed 

n1, n2  0.100 0.300 0.500  0.100 0.300 0.500 

10, 10  0.085 0.067 0.065  0.193 0.179 0.172 

20, 20  0.174 0.151 0.107  0.375 0.316 0.251 

30, 30  0.231 0.221 0.139  0.429 0.426 0.336 

40, 40  0.364 0.264 0.222  0.558 0.535 0.449 

60, 60  0.528 0.441 0.350  0.759 0.725 0.599 

10, 30  0.114 0.118 0.093  0.266 0.267 0.217 

20, 60  0.266 0.235 0.172  0.481 0.449 0.386 

30, 90  0.406 0.346 0.309  0.654 0.588 0.576 
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Table 8 

 

Large (0.8σ) Treatment Effect Rejection Rates for the Normal Distribution  

 

  α = .01  α = .05 

  Fraction of data imputed  Fraction of data imputed 

n1, n2  0.100 0.300 0.500  0.100 0.300 0.500 

10, 10  0.235 0.183 0.120  0.419 0.355 0.290 

20, 20  0.483 0.400 0.284  0.700 0.604 0.514 

30, 30  0.684 0.570 0.446  0.839 0.800 0.668 

40, 40  0.804 0.740 0.585  0.939 0.882 0.823 

60, 60  0.950 0.894 0.788  0.991 0.966 0.938 

10, 30  0.348 0.303 0.281  0.582 0.562 0.474 

20, 60  0.672 0.637 0.551  0.863 0.842 0.771 

30, 90  0.870 0.842 0.757  0.966 0.956 0.918 
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Table 9 

 

Very Large (1.2σ) Treatment Effect Rejection Rates for the Normal Distribution  

 

  α = .01  α = .05 

  Fraction of data imputed  Fraction of data imputed 

n1, n2  0.100 0.300 0.500  0.100 0.300 0.500 

10, 10  0.516 0.432 0.320  0.720 0.675 0.555 

20, 20  0.878 0.811 0.623  0.954 0.925 0.834 

30, 30  0.968 0.923 0.841  0.996 0.984 0.958 

40, 40  0.997 0.985 0.935  0.999 0.998 0.991 

60, 60  1.000 0.999 0.993  1.000 1.000 1.000 

10, 30  0.723 0.692 0.603  0.902 0.862 0.794 

20, 60  0.963 0.952 0.925  0.994 0.991 0.968 

30, 90  0.999 0.997 0.991  1.000 1.000 0.997 
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Table 10  

 

Huge (2.0σ) Treatment Effect Rejection Rates for the Normal Distribution 

 

  α = .01  α = .05 

  Fraction of data imputed  Fraction of data imputed 

n1, n2  0.100 0.300 0.500  0.100 0.300 0.500 

10, 10  0.950 0.887 0.764  0.991 0.967 0.904 

20, 20  0.999 0.996 0.979  1.000 1.000 0.999 

30, 30  1.000 1.000 0.996  1.000 1.000 1.000 

40, 40  1.000 1.000 1.000  1.000 1.000 1.000 

60, 60  1.000 1.000 1.000  1.000 1.000 1.000 

10, 30  0.996 0.997 0.970  1.000 1.000 0.998 

20, 60  1.000 1.000 1.000  1.000 1.000 1.000 

30, 90  1.000 1.000 1.000  1.000 1.000 1.000 
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 Tables 11 – 15 present the number of rejections out of 1,000 for the Chi-square (χ2) 

distribution under varying sample sizes, effect sizes, fractions of data imputed, and alpha. The 

Chi-square distribution has a single parameter: df. The distribution was simulated using df = 1 

 
 

Figure 7. χ2 distribution (df = 1). Created using SPSS syntax. 

 

The probability density function for the χ2 distribution (Figure 7) is 

1
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Table 11 

 

Small (0.2σ) Treatment Effect Rejection Rates for the χ2 Distribution (df=1) 

 

  α = .01  α = .05 

  Fraction of data imputed  Fraction of data imputed 

n1, n2  0.100 0.300 0.500  0.100 0.300 0.500 

10, 10  0.034 0.024 0.017  0.093 0.085 0.076 

20, 20  0.039 0.033 0.015  0.105 0.117 0.106 

30, 30  0.040 0.046 0.046  0.152 0.118 0.122 

40, 40  0.053 0.053 0.030  0.160 0.139 0.124 

60, 60  0.079 0.067 0.063  0.203 0.167 0.165 

10, 30  0.022 0.025 0.017  0.104 0.089 0.084 

20, 60  0.033 0.037 0.027  0.134 0.158 0.114 

30, 90  0.053 0.054 0.045  0.192 0.162 0.133 
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Table 12 

 

Medium (0.5σ) Treatment Effect Rejection Rates for the χ2 Distribution (df=1) 

 

  α = .01  α = .05 

  Fraction of data imputed  Fraction of data imputed 

n1, n2  0.100 0.300 0.500  0.100 0.300 0.500 

10, 10  0.144 0.115 0.094  0.278 0.250 0.222 

20, 20  0.214 0.197 0.168  0.413 0.387 0.316 

30, 30  0.317 0.251 0.195  0.515 0.454 0.394 

40, 40  0.386 0.361 0.257  0.631 0.569 0.463 

60, 60  0.547 0.493 0.372  0.768 0.724 0.609 

10, 30  0.147 0.173 0.158  0.354 0.352 0.289 

20, 60  0.295 0.281 0.255  0.537 0.508 0.468 

30, 90  0.455 0.401 0.366  0.681 0.611 0.580 
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Table 13 

 

Large (0.8σ) Treatment Effect Rejection Rates for the χ2 Distribution (df=1) 

 

  α = .01  α = .05 

  Fraction of data imputed  Fraction of data imputed 

n1, n2  0.100 0.300 0.500  0.100 0.300 0.500 

10, 10  0.325 0.306 0.212  0.520 0.484 0.403 

20, 20  0.543 0.470 0.365  0.712 0.664 0.580 

30, 30  0.709 0.624 0.469  0.843 0.804 0.705 

40, 40  0.819 0.726 0.643  0.914 0.894 0.817 

60, 60  0.937 0.898 0.796  0.977 0.957 0.920 

10, 30  0.448 0.411 0.375  0.651 0.620 0.564 

20, 60  0.683 0.678 0.609  0.864 0.834 0.796 

30, 90  0.856 0.853 0.769  0.947 0.925 0.916 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

48 

Table 14 

 

Very Large (1.2σ) Treatment Effect Rejection Rates for the χ2 Distribution (df=1) 

 

  α = .01  α = .05 

  Fraction of data imputed  Fraction of data imputed 

n1, n2  0.100 0.300 0.500  0.100 0.300 0.500 

10, 10  0.636 0.552 0.463  0.754 0.708 0.623 

20, 20  0.860 0.797 0.665  0.929 0.894 0.841 

30, 30  0.948 0.897 0.821  0.984 0.971 0.950 

40, 40  0.991 0.964 0.914  0.994 0.990 0.984 

60, 60  0.999 0.994 0.980  1.000 0.999 0.999 

10, 30  0.759 0.723 0.663  0.900 0.858 0.830 

20, 60  0.925 0.936 0.890  0.987 0.982 0.969 

30, 90  0.987 0.988 0.978  0.997 0.996 0.995 
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Table 15 

 

Huge (2.0σ) Treatment Effect Rejection Rates for the χ2 Distribution (df=1) 

 

  α = .01  α = .05 

  Fraction of data imputed  Fraction of data imputed 

n1, n2  0.100 0.300 0.500  0.100 0.300 0.500 

10, 10  0.899 0.865 0.765  0.966 0.947 0.888 

20, 20  0.992 0.982 0.953  0.995 0.998 0.992 

30, 30  1.000 0.999 0.983  1.000 0.999 1.000 

40, 40  1.000 1.000 1.000  1.000 1.000 1.000 

60, 60  1.000 1.000 1.000  1.000 1.000 1.000 

10, 30  0.976 0.955 0.923  0.991 0.992 0.981 

20, 60  0.999 0.999 0.997  0.999 1.000 0.999 

30, 90  1.000 1.000 1.000  1.000 1.000 1.000 
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 Tables 16 – 20 present the number of rejections out of 1,000 for the t distribution under 

varying sample sizes, effect sizes, fractions of data imputed, and alpha. The t distribution has a 

single parameter: df. The distribution was simulated using df = 3. 

 
 

Figure 8. t distribution (df = 3). Created using SPSS syntax. 

 

The probability density function for the t distribution (Figure 8) is 
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Table 16 

 

Small (0.2σ) Treatment Effect Rejection Rates for the t Distribution (df=3) 

 

  α = .01  α = .05 

  Fraction of data imputed  Fraction of data imputed 

n1, n2  0.100 0.300 0.500  0.100 0.300 0.500 

10, 10  0.026 0.024 0.021  0.098 0.086 0.078 

20, 20  0.047 0.022 0.025  0.117 0.106 0.095 

30, 30  0.026 0.029 0.035  0.139 0.114 0.123 

40, 40  0.060 0.044 0.030  0.153 0.145 0.125 

60, 60  0.059 0.076 0.063  0.211 0.183 0.156 

10, 30  0.027 0.021 0.016  0.112 0.107 0.087 

20, 60  0.035 0.041 0.035  0.137 0.118 0.115 

30, 90  0.066 0.047 0.064  0.168 0.163 0.163 
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Table 17 

 

Medium (0.5σ) Treatment Effect Rejection Rates for the t Distribution (df=3) 

 

  α = .01  α = .05 

  Fraction of data imputed  Fraction of data imputed 

n1, n2  0.100 0.300 0.500  0.100 0.300 0.500 

10, 10  0.138 0.125 0.090  0.311 0.290 0.211 

20, 20  0.224 0.178 0.150  0.411 0.395 0.332 

30, 30  0.318 0.268 0.202  0.543 0.515 0.421 

40, 40  0.384 0.363 0.288  0.624 0.612 0.511 

60, 60  0.575 0.508 0.402  0.760 0.725 0.640 

10, 30  0.171 0.151 0.147  0.329 0.306 0.286 

20, 60  0.289 0.290 0.237  0.491 0.500 0.469 

30, 90  0.439 0.432 0.397  0.669 0.620 0.596 
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Table 18 

 

Large (0.8σ) Treatment Effect Rejection Rates for the t Distribution (df=3) 

 

  α = .01  α = .05 

  Fraction of data imputed  Fraction of data imputed 

n1, n2  0.100 0.300 0.500  0.100 0.300 0.500 

10, 10  0.353 0.298 0.259  0.564 0.480 0.393 

20, 20  0.555 0.514 0.397  0.749 0.698 0.599 

30, 30  0.716 0.642 0.514  0.856 0.798 0.737 

40, 40  0.805 0.749 0.610  0.919 0.887 0.813 

60, 60  0.921 0.887 0.803  0.970 0.955 0.927 

10, 30  0.455 0.430 0.368  0.624 0.602 0.567 

20, 60  0.707 0.673 0.593  0.837 0.834 0.780 

30, 90  0.881 0.822 0.772  0.954 0.910 0.924 
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Table 19 

 

Very Large (1.2σ) Treatment Effect Rejection Rates for the t Distribution (df=3) 

 

  α = .01  α = .05 

  Fraction of data imputed  Fraction of data imputed 

n1, n2  0.100 0.300 0.500  0.100 0.300 0.500 

10, 10  0.643 0.545 0.450  0.798 0.740 0.657 

20, 20  0.852 0.770 0.687  0.940 0.910 0.877 

30, 30  0.935 0.908 0.838  0.979 0.973 0.940 

40, 40  0.975 0.970 0.903  0.999 0.991 0.969 

60, 60  0.999 0.997 0.978  1.000 1.000 0.997 

10, 30  0.785 0.743 0.703  0.894 0.859 0.834 

20, 60  0.956 0.945 0.904  0.985 0.983 0.969 

30, 90  0.993 0.986 0.975  0.998 0.996 0.994 
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Table 20 

 

Huge (2.0σ) Treatment Effect Rejection Rates for the t Distribution (df=3) 

 

  α = .01  α = .05 

  Fraction of data imputed  Fraction of data imputed 

n1, n2  0.100 0.300 0.500  0.100 0.300 0.500 

10, 10  0.905 0.871 0.796  0.949 0.929 0.911 

20, 20  0.986 0.990 0.947  0.998 0.992 0.980 

30, 30  0.998 0.996 0.988  1.000 1.000 0.998 

40, 40  1.000 0.999 0.998  1.000 1.000 1.000 

60, 60  1.000 1.000 1.000  1.000 1.000 1.000 

10, 30  0.971 0.963 0.939  0.988 0.986 0.974 

20, 60  1.000 0.998 0.997  1.000 0.998 0.997 

30, 90  1.000 1.000 0.999  1.000 1.000 1.000 
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CHAPTER 5 DISCUSSION 

 Table 21 was constructed to serve as a benchmark to separate the effects of power theory 

from those induced by MI. It was created by drawing two samples (X1, X2) of sizes (n1, n2) from 

the Normal distribution, adding the stated treatment effect to X2, conducting a two-tailed 

independent samples t test, and advancing a counter if the test was significant at the given alpha 

level. The procedure was repeated 1,000 times for each combination of factor levels. The results 

show the rejection rates that would be expected under normal power theory and demonstrate the 

power advantage of larger (balanced) samples, larger effect sizes, and a less conservative alpha 

level.  

Table 21 

 

Rejection Rates for the Nonimputed Normal Distribution 

 

  α = .01  α = .05 

  Effect Size  Effect Size 

n1, n2  0.2σ 0.5σ 0.8σ 1.2σ 2.0σ  0.2σ 0.5σ 0.8σ 1.2σ 2.0σ 

10, 10  0.018 0.049 0.171 0.440 0.927  0.059 0.190 0.385 0.725 0.987 

20, 20  0.019 0.152 0.409 0.871 0.999  0.101 0.327 0.701 0.961 1.000 

30, 30  0.023 0.255 0.680 0.972 1.000  0.123 0.478 0.850 0.995 1.000 

40, 40  0.043 0.337 0.845 0.993 1.000  0.154 0.584 0.949 1.000 1.000 

60, 60  0.069 0.563 0.960 1.000 1.000  0.168 0.774 0.994 1.000 1.000 

10, 30  0.021 0.098 0.301 0.716 0.996  0.076 0.262 0.558 0.897 0.999 

20, 60  0.023 0.264 0.641 0.971 1.000  0.129 0.486 0.860 0.991 1.000 

30, 90  0.047 0.408 0.878 0.998 1.000  0.143 0.662 0.973 1.000 1.000 

 

 A small (0.2σ) difference between treatment arms was virtually undetectable (< 7%) at 

the .01 alpha level and marginally detectable (< 17%) at the .05 alpha level. Although clinicians 

would hope that a medium (0.5σ) treatment effect would be detected with a relatively small 
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sample, at the .01 alpha level, a sample size of 30, 30 yielded a one-in-four (.255) chance of 

rejection. At the .05 alpha level, clinicians had slightly less than a 50-50 (.478) chance of 

detecting a difference between treatment arms with the same 30, 30 sample size. Unbalanced 

designs were less powerful; a sample size of 20, 60 was necessary to achieve the same one-in-

four (.264) results at alpha .01 and one-in-two (.486) results at alpha .05. A large (0.8σ) 

difference between treatment arms was detectable at Cohen’s recommended .80 (β = .20) level 

once the sample size for balanced designs reached 40, 40 at alpha .01 and 30, 30 at alpha .05. 

Unbalanced designs reached the recommended power level once the sample size reached 30, 90 

at alpha .01 and 20, 60 at alpha .05. A very large (1.2σ) treatment effect was detectable at the 

recommended .80 power level for all of the sample sizes save for the 10, 10 and 10, 30 levels at 

alpha .01 and the 10, 10 level at alpha .05. A huge difference between treatment arms was 

detectable at near maximum power for all of the sample sizes tested at both alpha levels. 

 The rejection rates presented in Tables 6 – 20 can be used to aid clinicians in determining 

the power that they can expect to achieve given a specific distribution, effect size, sample size, 

fraction of data imputed, and alpha. The results show that the rejection rates for imputed data 

follow the trends that would be expected under normal power theory regardless of distribution. 

There was a positive relationship between effect size and rejection rates with minimal power at 

the small (0.2σ) effect size level and near maximum power at the huge (2.0σ) effect size level. 

As expected, there was a positive relationship between sample size and rejection rates with 

balanced samples being more powerful than unbalanced samples. Power was also higher at the 

less conservative .05 alpha level.  

 Tables 22 – 26 illustrate the impact of distribution shape on rejection rates by presenting 

the range of rejection rates (the distribution with the highest rejection rate minus the distribution 
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with the lowest rejection rate) for the three distributions under investigation. The largest 

differences tended to occur at the smallest balanced (10, 10) and unbalanced (10, 30) sample size 

levels. The Normal distribution tended to reject at a lower rate than the Chi-square and t 

distributions at the medium (0.5σ) and large (0.8σ) effect size levels, but rejected at a higher rate 

at the very large (1.2σ) effect size level. 

 With a small (0.2σ) treatment effect, the largest difference at the .01 alpha level was 2.3 

percentage points and occurred at the 30, 30 sample size level with 50% of the data imputed 

between the Normal (.023) and Chi-square (.046) distributions. The largest difference at alpha 

.05 was 5.5% and occurred at the 30, 90 sample size level with 10% of the data imputed between 

the Normal (.137) and Chi-square (.192) distributions.  

 With a medium (0.5σ) treatment effect, the largest difference at the .01 alpha level was 

9.9 percentage points and occurred at the 40, 40 sample size level with 30% of the data imputed 

between the Normal (.264) and t (.363) distributions. The largest difference at the .05 alpha level 

was 11.8% and occurred at the 10, 10 sample size level with 10% of the data imputed between 

the Normal distribution (.193) and the t distribution (.311).  

 With a large (0.8σ) treatment effect, the largest difference at the .01 alpha level was 

13.9% and occurred at the 10, 10 sample size level with 50% of the data imputed between the 

Normal (.120) and t (.259) distributions. At the .05 alpha level, the largest difference was 14.5% 

and occurred at the 10, 10 sample size level with 10% of the data imputed between the Normal 

distribution (.419) and the t distribution (.564). Excluding the 10, 10 and 20, 20 balanced sample 

size levels and the 10, 30 unbalanced sample size level reduced the largest difference at alpha .01 

to 7.2% and the largest difference at alpha .05 to 6.9%.  
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Table 22 

Range of Distribution Rejection Rates for a Small (0.2σ) Treatment Effect  

 

  α = .01  α = .05 

  Percentage of data imputed  Percentage of data imputed 

n1, n2  10% 30% 50%  10% 30% 50% 

10, 10   0.8   1.0  0.6   3.0  0.4  1.4 

20, 20   1.9  1.1  1.0   1.4  1.3  1.1 

30, 30   1.4  1.7  2.3   1.4  1.1  2.2 

40, 40   1.8  1.0  0.4   1.2  0.6  0.9 

60, 60   2.0  1.8  0.7   1.6  1.9  4.5 

10, 30   1.4  0.6  0.9   4.5  2.3  1.1 

20, 60   0.8  0.7  1.2   1.4  4.0  1.5 

30, 90   1.8  0.9  1.9   5.5  1.1  3.0 

 

Table 23 

Range of Distribution Rejection Rates for a Medium (0.5σ) Treatment Effect 

 

  α = .01  α = .05 

  Percentage of data imputed  Percentage of data imputed 

n1, n2  10% 30% 50%  10% 30% 50% 

10, 10   5.9   5.8  2.9     11.8    11.1  5.0 

20, 20   5.0  4.6  6.1   3.8  7.9  8.1 

30, 30   8.7  4.7  6.3     11.4  8.9  8.5 

40, 40   2.2  9.9  6.6   7.3  7.7  6.2 

60, 60   4.7  6.7  5.2   0.9  0.1  4.1 

10, 30   5.7  5.5  6.5   8.8  8.5  7.2 

20, 60   2.9  5.5  8.3   5.6  5.9  8.3 

30, 90   4.9  8.6  8.8   2.7  3.2  2.0 
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Table 24 

Range of Distribution Rejection Rates for a Large (0.8σ) Treatment Effect 

 

  α = .01  α = .05 

  Percentage of data imputed  Percentage of data imputed 

n1, n2  10% 30% 50%  10% 30% 50% 

10, 10      11.8 12.3    13.9      14.5     12.9    11.3 

20, 20        7.2 11.4 11.3   4.9  9.4  8.5 

30, 30        3.2  7.2  6.8   1.7  0.6  6.9 

40, 40        1.5  2.3  5.8   2.5  1.2  1.0 

60, 60        2.9  1.1  1.5   2.1  1.1  1.8 

10, 30      10.7 12.7  9.4   6.9  5.8  9.3 

20, 60        3.5  4.1  5.8   2.7  0.8  2.5 

30, 90        2.5  3.1  1.5   1.9  4.6  0.8 

 

Table 25 

Range of Distribution Rejection Rates for a Very Large (1.2σ) Treatment Effect 

 

  α = .01  α = .05 

  Percentage of data imputed  Percentage of data imputed 

n1, n2  10% 30% 50%  10% 30% 50% 

10, 10     12.7    12.0    14.3  7.8   6.5    10.2 

20, 20       2.6      4.1      6.4   2.5  3.1  4.3 

30, 30       3.3      2.6      2.0   1.7  1.3  1.8 

40, 40       2.2      2.1      3.2   0.5  0.8  2.2 

60, 60       0.1      0.5      1.5   0.0  0.1  0.3 

10, 30       6.2      5.1    10.0   0.8  0.4  4.0 

20, 60       3.8      1.6      3.5   0.9  0.9  0.1 

30, 90       1.2      1.1      1.6   0.3  0.4  0.3 
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Table 26 

Range of Distribution Rejection Rates for a Huge (2.0σ) Treatment Effect 

 

  α = .01  α = .05 

  Percentage of data imputed  Percentage of data imputed 

n1, n2  10% 30% 50%  10% 30% 50% 

10, 10  5.1 2.2 3.2  4.2 3.8 2.3 

20, 20  1.3 1.4 3.2  0.5 0.8 1.9 

30, 30  0.2 0.4 1.3  0.0 0.1 0.2 

40, 40  0.0 0.1 0.2  0.0 0.0 0.0 

60, 60  0.0 0.0 0.0  0.0 0.0 0.0 

10, 30  2.5 4.2 4.7  1.2 1.4 2.4 

20, 60  0.1 0.2 0.3  0.1 0.2 0.3 

30, 90  0.0 0.0 0.1  0.0 0.0 0.0 

 

 With a very large (1.2σ) treatment effect, the largest difference at the .01 alpha level was 

14.3% and occurred at the 10, 10 sample size level with 50% of the data imputed between the 

Normal distribution (.320) and the Chi-square distribution (.463). At the .05 alpha level, the 

largest difference was 10.2% and occurred at the 10, 10 sample size level with 50% of the data 

imputed between the Normal (.555) and t (.657) distributions. Excluding the 10, 10 and 20, 20 

balanced sample size levels and the 10, 30 unbalanced sample size level reduced the largest 

difference at alpha .01 to 3.8% and the largest difference at alpha .05 to 2.2%. 

 With a huge (2.0σ) treatment effect, the largest difference at the .01 alpha level was 5.1% 

and occurred at the 10, 10 sample size level with 10% of the data imputed between the Chi-

square (.899) and Normal (.950) distributions. At the .05 alpha level, the largest difference was 

4.2% and occurred at the 10, 10 sample size level with 10% of the data imputed between the t 

(.949) and Normal (.991) distributions. Excluding the 10, 10 and 20, 20 balanced sample size 
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levels and the 10, 30 unbalanced sample size level virtually eliminated any differences between 

the distributions. 

Tables 27 – 41 present the change in the rejection rate as a result of the change in the 

percentage of data imputed (PDI) for the given distribution, effect size, sample size and alpha. 

The results show that although statistical power decreased (or Type II error increased) as the PDI 

increased, the magnitude of the power loss was dependent upon effect size. As effect size 

increased, the change in rejection rate (as a function of the change in PDI) increased until the 

effect size reached the large (1.2) level at which point the trend reversed itself. Had the study 

not included Sawilowsky’s (2009) very large and huge effect size levels, this finding would have 

been missed. 

 With a small (0.2σ) treatment effect (Tables 27 – 29), as the PDI increased from 10% to 

30%, the loss of power was 2.5% or less at alpha .01 and 3.6% or less at alpha .05 regardless of 

sample size and distribution. As the PDI increased from 30% to 50%, the loss of power was 

2.3% or less at alpha .01 and 4.4% or less at alpha .05 regardless of sample size and distribution. 

As the PDI increased from 10% to 50%, the loss of power was 3% or less at alpha .01 and 7.5% 

or less at alpha .05 regardless of sample size and distribution.  

With a medium (0.5σ) treatment effect (Tables 30 – 32), as the PDI increased from 10% 

to 30%, the loss of power was 10% or less regardless of sample size for the Normal distribution 

and 6.7% or less regardless of sample size for the Chi-square and t distributions at alpha .01. At 

the .05 alpha level, the loss of power was 7% or less regardless of sample size and distribution. 

As the PDI increased from 30% to 50%, the loss of power was 12.6% or less regardless of 

sample size, distribution, and alpha. As the PDI increased from 10% to 50%, the loss of power 

was 17.8% or less regardless of sample size, distribution, and alpha. 
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Table 27 

Impact of PDI on Normal Distribution, Small (0.2σ) Effect Size Rejection Rates 

  α = .01  α = .05 

  % Change in Rejection Rate  % Change in Rejection Rate 

n1, n2  10-30% 30-50% 10-50%  10-30% 30-50% 10-50% 

10, 10   0.3 -1.1 -0.8    1.4 -1.8 -0.4 

20, 20  -0.5 -0.3 -0.8    0.1 -0.9 -0.8 

30, 30  -0.4 -0.9 -1.3   -3.1 -0.6 -3.7 

40, 40   0.1 -0.9 -0.8   -2.6 -2.3 -4.9 

60, 60  -0.9 -0.2 -1.1   -3.1 -4.4 -7.5 

10, 30  -1.7  0.6 -1.1    1.7 -0.8  0.9 

20, 60   0.7  0.5  1.2   -2.2 -2.6 -4.8 

30, 90  -0.3  0.5  0.2    1.5 -0.2  1.3 

 

Table 28 

Impact of PDI on X2 Distribution, Small (0.2σ) Effect Size Rejection Rates 

  α = .01  α = .05 

  % Change in Rejection Rate  % Change in Rejection Rate 

n1, n2  10-30% 30-50% 10-50%  10-30% 30-50% 10-50% 

10, 10  -1.0 -0.7 -1.7   -0.8 -0.9 -1.7 

20, 20  -0.6 -1.8 -2.4    1.2 -1.1  0.1 

30, 30   0.6  0.0  0.6   -3.4  0.4 -3.0 

40, 40   0.0 -2.3 -2.3   -2.1 -1.5 -3.6 

60, 60  -1.2 -0.4 -1.6   -3.6 -0.2 -3.8 

10, 30   0.3 -0.8 -0.5   -1.5 -0.5 -2.0 

20, 60   0.4 -1.0 -0.6    2.4 -4.4 -2.0 

30, 90   0.1 -0.9 -0.8   -3.0 -2.9 -5.9 
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Table 29 

Impact of PDI on t Distribution, Small (0.2σ) Effect Size Rejection Rates  

  α = .01  α = .05 

  % Change in Rejection Rate  % Change in Rejection Rate 

n1, n2  10-30% 30-50% 10-50%  10-30% 30-50% 10-50% 

10, 10  -0.2 -0.3 -0.5   -1.2 -0.8 -2.0 

20, 20  -2.5  0.3 -2.2   -1.1 -1.1 -2.2 

30, 30   0.3  0.6  0.9   -2.5  0.9 -1.6 

40, 40  -1.6 -1.4 -3.0   -0.8 -2.0 -2.8 

60, 60   1.7 -1.3  0.4   -2.8 -2.7 -5.5 

10, 30  -0.6 -0.5 -1.1   -0.5 -2.0 -2.5 

20, 60   0.6 -0.6  0.0   -1.9 -0.3 -2.2 

30, 90  -1.9  1.7 -0.2   -0.5  0.0 -0.5 

 

Table 30 

Impact of PDI on Normal Distribution, Medium (0.5σ) Effect Size Rejection Rates 

  α = .01  α = .05 

  % Change in Rejection Rate  % Change in Rejection Rate 

n1, n2  10-30% 30-50% 10-50%  10-30% 30-50% 10-50% 

10, 10    -1.8 -0.2   -2.0   -1.4   -0.7   -2.1 

20, 20    -2.3 -4.4   -6.7   -5.9   -6.5 -12.4 

30, 30    -1.0 -8.2   -9.2   -0.3   -9.0   -9.3 

40, 40  -10.0 -4.2 -14.2   -2.3   -8.6 -10.9 

60, 60    -8.7 -9.1 -17.8   -3.4 -12.6 -16.0 

10, 30     0.4 -2.5   -2.1     0.1   -5.0   -4.9 

20, 60    -3.1 -6.3   -9.4   -3.2   -6.3   -9.5 

30, 90    -6.0 -3.7   -9.7   -6.6   -1.2   -7.8 
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Table 31 

Impact of PDI on X2 Distribution, Medium (0.5σ) Effect Size Rejection Rates 

  α = .01  α = .05 

  % Change in Rejection Rate  % Change in Rejection Rate 

n1, n2  10-30% 30-50% 10-50%  10-30% 30-50% 10-50% 

10, 10  -2.9   -2.1   -5.0   -2.8   -2.8   -5.6 

20, 20  -1.7   -2.9   -4.6   -2.6   -7.1   -9.7 

30, 30  -6.6   -5.6 -12.2   -6.1   -6.0 -12.1 

40, 40  -2.5 -10.4 -12.9   -6.2 -10.6 -16.8 

60, 60  -5.4 -12.1 -17.5   -4.4 -11.5 -15.9 

10, 30   2.6   -1.5    1.1   -0.2   -6.3   -6.5 

20, 60  -1.4   -2.6   -4.0   -2.9   -4.0   -6.9 

30, 90  -5.4   -3.5   -8.9   -7.0   -3.1 -10.1 

 

Table 32 

Impact of PDI on t Distribution, Medium (0.5σ) Effect Size Rejection Rates 

  α = .01  α = .05 

  % Change in Rejection Rate  % Change in Rejection Rate 

n1, n2  10-30% 30-50% 10-50%  10-30% 30-50% 10-50% 

10, 10  -1.3   -3.5   -4.8   -2.1        -7.9 -10.0 

20, 20  -4.6   -2.8   -7.4   -1.6        -6.3   -7.9 

30, 30  -5.0   -6.6 -11.6   -2.8        -9.4 -12.2 

40, 40  -2.1   -7.5   -9.6   -1.2      -10.1 -11.3 

60, 60  -6.7 -10.6 -17.3   -3.5        -8.5 -12.0 

10, 30  -2.0   -0.4   -2.4   -2.3        -2.0   -4.3 

20, 60   0.1   -5.3   -5.2    0.9        -3.1   -2.2 

30, 90  -0.7   -3.5   -4.2   -4.9        -2.4   -7.3 
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Table 33 

Impact of PDI on Normal Distribution, Large (0.8σ) Effect Size Rejection Rates 

  α = .01  α = .05 

  % Change in Rejection Rate  % Change in Rejection Rate 

n1, n2  10-30% 30-50% 10-50%  10-30% 30-50% 10-50% 

10, 10    -5.2   -6.3 -11.5   -6.4   -6.5 -12.9 

20, 20    -8.3 -11.6 -19.9   -9.6   -9.0 -18.6 

30, 30  -11.4 -12.4 -23.8   -3.9 -13.2 -17.1 

40, 40    -6.4 -15.5 -21.9   -5.7   -5.9 -11.6 

60, 60    -5.6 -10.6 -16.2   -2.5   -2.8   -5.3 

10, 30    -4.5   -2.2   -6.7   -2.0   -8.8 -10.8 

20, 60    -3.5   -8.6 -12.1   -2.1   -7.1   -9.2 

30, 90    -2.8   -8.5 -11.3   -1.0   -3.8   -4.8 

 

Table 34 

Impact of PDI on X2 Distribution, Large (0.8σ) Effect Size Rejection Rates 

  α = .01  α = .05 

  % Change in Rejection Rate  % Change in Rejection Rate 

n1, n2  10-30% 30-50% 10-50%  10-30% 30-50% 10-50% 

10, 10  -1.9   -9.4 -11.3   -3.6 -8.1     -11.7 

20, 20  -7.3 -10.5 -17.8   -4.8 -8.4     -13.2 

30, 30  -8.5 -15.5 -24.0   -3.9 -9.9     -13.8 

40, 40  -9.3   -8.3 -17.6   -2.0 -7.7       -9.7 

60, 60  -3.9 -10.2 -14.1   -2.0 -3.7       -5.7 

10, 30  -3.7   -3.6   -7.3   -3.1 -5.6       -8.7 

20, 60  -0.5   -6.9   -7.4   -3.0 -3.8       -6.8 

30, 90  -0.3   -8.4   -8.7   -2.2 -0.9       -3.1 
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Table 35 

Impact of PDI on t Distribution, Large (0.8σ) Effect Size Rejection Rates 

  α = .01  α = .05 

  % Change in Rejection Rate  % Change in Rejection Rate 

n1, n2  10-30% 30-50% 10-50%  10-30% 30-50% 10-50% 

10, 10  -5.5   -3.9   -9.4   -8.4 -8.7 -17.1 

20, 20  -4.1 -11.7 -15.8   -5.1 -9.9 -15.0 

30, 30  -7.4 -12.8 -20.2   -5.8 -6.1 -11.9 

40, 40  -5.6 -13.9 -19.5   -3.2 -7.4 -10.6 

60, 60  -3.4   -8.4 -11.8   -1.5 -2.8   -4.3 

10, 30  -2.5   -6.2   -8.7   -2.2 -3.5   -5.7 

20, 60  -3.4   -8.0 -11.4   -0.3 -5.4   -5.7 

30, 90  -5.9   -5.0 -10.9   -4.4  1.4   -3.0 

 

Table 36 

Impact of PDI on Normal Distribution, Very Large (1.2σ) Effect Size Rejection Rates 

  α = .01  α = .05 

  % Change in Rejection Rate  % Change in Rejection Rate 

n1, n2  10-30% 30-50% 10-50%  10-30% 30-50% 10-50% 

10, 10  -8.4 -11.2 -19.6   -4.5 -12.0 -16.5 

20, 20  -6.7 -18.8 -25.5   -2.9   -9.1 -12.0 

30, 30  -4.5   -8.2 -12.7   -1.2   -2.6   -3.8 

40, 40  -1.2   -5.0   -6.2   -0.1   -0.7   -0.8 

60, 60  -0.1   -0.6   -0.7    0.0    0.0    0.0 

10, 30  -3.1   -8.9 -12.0   -4.0   -6.8 -10.8 

20, 60  -1.1   -2.7   -3.8   -0.3   -2.3   -2.6 

30, 90  -0.2   -0.6   -0.8    0.0   -0.3   -0.3 
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Table 37 

Impact of PDI on X2 Distribution, Very Large (1.2σ) Effect Size Rejection Rates 

  α = .01  α = .05 

  % Change in Rejection Rate  % Change in Rejection Rate 

n1, n2  10-30% 30-50% 10-50%  10-30% 30-50% 10-50% 

10, 10  -8.4   -8.9 -17.3   -4.6 -8.5     -13.1 

20, 20  -6.3 -13.2 -19.5   -3.5 -5.3 -8.8 

30, 30  -5.1   -7.6 -12.7   -1.3 -2.1 -3.4 

40, 40  -2.7   -5.0   -7.7   -0.4 -0.6 -1.0 

60, 60  -0.5   -1.4   -1.9   -0.1  0.0 -0.1 

10, 30  -3.6   -6.0   -9.6   -4.2 -2.8 -7.0 

20, 60   1.1   -4.6   -3.5   -0.5 -1.3 -1.8 

30, 90   0.1   -1.0   -0.9   -0.1 -0.1 -0.2 

 

Table 38 

Impact of PDI on t Distribution, Very Large (1.2σ) Effect Size Rejection Rates 

  α = .01  α = .05 

  % Change in Rejection Rate  % Change in Rejection Rate 

n1, n2  10-30% 30-50% 10-50%  10-30% 30-50% 10-50% 

10, 10  -9.8 -9.5 -19.3   -5.8 -8.3 -14.1 

20, 20  -8.2 -8.3 -16.5   -3.0 -3.3   -6.3 

30, 30  -2.7 -7.0   -9.7   -0.6 -3.3   -3.9 

40, 40  -0.5 -6.7   -7.2   -0.8 -2.2   -3.0 

60, 60  -0.2 -1.9   -2.1    0.0 -0.3   -0.3 

10, 30  -4.2 -4.0   -8.2   -3.5 -2.5   -6.0 

20, 60  -1.1 -4.1   -5.2   -0.2 -1.4   -1.6 

30, 90  -0.7 -1.1   -1.8   -0.2 -0.2   -0.4 
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Table 39 

Impact of PDI on Normal Distribution, Huge (2.0σ) Effect Size Rejection Rates 

  α = .01  α = .05 

  % Change in Rejection Rate  % Change in Rejection Rate 

n1, n2  10-30% 30-50% 10-50%  10-30% 30-50% 10-50% 

10, 10  -6.3     -12.3 -18.6    -2.4 -6.3 -8.7 

20, 20  -0.3       -1.7   -2.0     0.0 -0.1 -0.1 

30, 30   0.0       -0.4   -0.4     0.0  0.0  0.0 

40, 40   0.0        0.0    0.0     0.0  0.0  0.0 

60, 60   0.0        0.0    0.0     0.0  0.0  0.0 

10, 30   0.1       -2.7   -2.6     0.0 -0.2 -0.2 

20, 60   0.0        0.0    0.0     0.0  0.0  0.0 

30, 90   0.0        0.0    0.0     0.0  0.0  0.0 

 

Table 40 

Impact of PDI on X2 Distribution, Huge (2.0σ) Effect Size Rejection Rates 

  α = .01  α = .05 

  % Change in Rejection Rate  % Change in Rejection Rate 

n1, n2  10-30% 30-50% 10-50%  10-30% 30-50% 10-50% 

10, 10  -3.4 -10.0 -13.4  -1.9 -5.9      -7.8 

20, 20  -1.0   -2.9   -3.9   0.3 -0.6      -0.3 

30, 30  -0.1   -1.6   -1.7  -0.1  0.1       0.0 

40, 40   0.0    0.0    0.0   0.0  0.0       0.0 

60, 60   0.0    0.0    0.0   0.0  0.0       0.0 

10, 30  -2.1   -3.2   -5.3   0.1 -1.1      -1.0 

20, 60   0.0   -0.2   -0.2   0.1 -0.1       0.0 

30, 90   0.0      0.0    0.0   0.0  0.0       0.0 
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Table 41 

Impact of PDI on t Distribution, Huge (2.0σ) Effect Size Rejection Rates 

  α = .01  α = .05 

  % Change in Rejection Rate  % Change in Rejection Rate 

n1, n2  10-30% 30-50% 10-50%  10-30% 30-50% 10-50% 

10, 10  -3.4 -7.5 -10.9  -2.0 -1.8 -3.8 

20, 20   0.4 -4.3   -3.9  -0.6 -1.2 -1.8 

30, 30  -0.2 -0.8   -1.0   0.0 -0.2 -0.2 

40, 40  -0.1 -0.1   -0.2   0.0  0.0  0.0 

60, 60   0.0  0.0    0.0   0.0  0.0  0.0 

10, 30  -0.8 -2.4   -3.2  -0.2 -1.2 -1.4 

20, 60  -0.2 -0.1   -0.3  -0.2 -0.1 -0.3 

30, 90   0.0 -0.1   -0.1   0.0  0.0  0.0 

 

 With a large (0.8σ) treatment effect (Tables 33 – 35), as the PDI increased from 10% to 

30%, the loss of power was 11.4% or less for the Normal and Chi-square distributions and 7.4% 

or less for the t distribution at alpha .01 regardless of sample size. At the .05 alpha level, the loss 

of power was 5.8% or less save for the 10, 10 and 20, 20 sample size levels regardless of 

distribution. As the PDI increased from 30% to 50%, the loss of power at alpha .01 was 15.5% or 

less regardless of sample size and distribution. At the .05 alpha level, the loss of power was 

13.2% or less for the Normal distribution and 9.9% or less for the Chi-square and t distributions 

regardless of sample size. As the PDI increased from 10% to 50%, the loss of power was 24% or 

less at alpha .01 and 18.6% or less at alpha .05 regardless of sample size and distribution.  

 With a very large (1.2σ) treatment effect (Tables 36 – 38), as the PDI increased from 

10% to 30%, the loss of power was 5.1% or less save for the 10, 10 and 20, 20 sample size levels 

at alpha .01 regardless of distribution. At the .05 alpha level, the loss of power was 1.3% or less 
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save for the 10, 10 and 20, 20 balanced sample size levels and the 10, 30 unbalanced sample size 

level regardless of distribution. As the PDI increased from 30% to 50%, the loss of power was 

8.9% or less save for the 10, 10 and 20, 20 sample size levels at alpha .01 regardless of 

distribution. At alpha .05, the loss of power was 3.3% or less save for the 10, 10 and 20, 20 

balanced sample size levels and the 10, 30 unbalanced sample size level regardless of 

distribution. As the PDI increased from 10% to 50%, the loss of power was 12.7% or less at 

alpha .01 regardless of sample size and distribution. At the .05 alpha level, the loss of power was 

3.9% or less save for the 10, 10 and 20, 20 balanced sample size levels and the 10, 30 

unbalanced sample size level regardless of distribution.  

 With a huge (2.0σ) treatment effect (Tables 39 – 41), the PDI had virtually no impact on 

rejection rates save for the 10, 10 and 20, 20 balanced sample size levels and the 10, 30 

unbalanced sample size level regardless of distribution and alpha.  

 In conclusion, one of the strengths of multiple imputation is that it has power advantages 

over traditional missing data methods (see Chapter 2). As the results from this simulation 

indicate that there can be a loss of power when MI is utilized using the defaults in SPSS (m = 5, 

iterations = 10) and a limited imputation model (one auxiliary variable with r = .50), it is 

recommended that clinicians plan for the treatment of missing data in the design stage to reduce 

the probability of making a Type II error. 

Limitations of the Study 

 Some degree of caution is warranted when generalizing the results of simulation studies 

to a broad range of settings. This study was conducted using SPSS; the use of other software 

could potentially affect results (e.g., Allison, 2000; Von Hippel, 2004). Imputations were 

generated using 10 iterations and m = 5. Changing either (or both) of these simulation 
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characteristics could affect rejection rates. One auxiliary variable (r = .50) was included in the 

imputation model, adding additional variables or changing the correlation of the variable in the 

model (see chapter 2) could affect results. Any generalizations should be limited to the factor 

levels simulated in this study. 

Scope for Future Research 

 There are two key ways that this research could be extended. First, this Monte Carlo 

simulation investigated three theoretical distributions. As public access to clinical trial data 

increases, clinicians could improve the ecological validity of this research by estimating real 

clinical distributions. Second, this research was conducted under the MCAR assumption. It could 

be extended by examining missing data created under the MNAR mechanism. Of special interest 

would be an investigation into MI’s limitations when the missing data follow an exceptionally 

complex pattern. 
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The National Academy of Science identified numerous high priority areas for missing 

data research. This study addresses several of those areas by systematically investigating the 

impact of multiple imputation on the rejection rate of the independent samples t test under 

varying conditions of sample size, effect size, fraction of missing data, distribution shape, and 

alpha. In addition to addressing gaps in the missing data literature, this study also provides an 

overview of the multiple imputation procedure, as implemented in SPSS, with a focus on the 

practical aspects and challenges of using this method.  
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