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CHAPTER 1 INTRODUCTION 

Background of the Study 

Structural Equation Modeling (SEM) is a relatively new statistical methodology 

that is beginning to be established in the professional field of statistics. Its 

foundational theory was published by Wright (1918), where a path analysis was used 

to model the bone size of rabbits. However, the novelty of the methodology was such 

that SEM was not accepted by researchers until the 1960s or 1970s (Matsueda, 

2011). This coincided with increasing use of computers, allowing for the more 

practical use of the complicated matrix models by standard researchers.  

The development of more complicated analytical procedures was inevitable. 

Hoyle (1995) indicated, “with the increasing complexity and specificity of research 

questions in the social and behavioral sciences…has come increasing interest in 

SEM as a standard approach to testing research hypotheses” (p. 1). Indeed, with the 

complex nature of many modern research models, it is imperative to use a data 

analysis tool that allows the most flexibility in the analysis to confirm a best 

interpretation of the model results. SEM is a powerful tool that can be used to explore 

data for the purpose of improving the understanding of the interactions, reliability, 

and general characteristics. It allows for a more complete and comprehensive 

analysis compared to other research methodologies (such as multiple regression) 

because it allows freedom in the evaluation of several model construct relationships 

simultaneously (Alavifar, 2012). This advantage should not be underestimated. The 

ability to take 5, 10, 20, or 100 variables and analyze them together using one test 
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without the necessity for Bonferonni or similar corrections allows for considerable 

increase in statistical power. 

SEM has the unique capability to model relationships between variables and 

to estimate error. SEM can therefore be considered as rather a “union” (p. 3) 

between path analysis and factor analysis (Gullen, 2000). Modelling error in SEM is a 

unique advantage. By virtue that error is explicit in the SEM model, as opposed to the 

implicit implication of error via other methodologies, using SEM can result in a more 

realistic, reliable, and comprehensive model of the data. 

SEM models are developed by determining relationships between observed 

and/or latent variables to develop an initial model. The model is analyzed to 

determine whether it is an appropriate approximation of the data construct. If the 

model is concluded to be an appropriate approximation, it is analyzed to ascertain 

the magnitude and direction of relationships between the different variables. 

Kline (2011) set forth six steps to developing a SEM model. They are (1) 

specifying the model, (2) evaluating the model identification, (3) selecting the 

measures and collecting and screening the data, (4) estimating the model, (5) re-

specifying the model, and (6) reporting the results.  

Probably, the most essential step from the six mentioned above is Step 4. This 

includes assessing the model to determine how well it represents the data. Many 

SEM models can be developed that represent the data to a degree; however, a good 

model will be the best fit representation. To this end, model fit statistics were 

developed. These statistics result in a quantitative analysis of model fit that allows 

researchers to determine how well the model fits the data in an objective manner. 
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The matter of how to develop these fit statistics and which are the best to use 

has been a topic of great discussion. Kline (2011) indicated that “For at least 30 

years the literature has carried an ongoing discussion about the best ways to test 

hypotheses and assess model fit” (p. 190). There are dozens of fit indices, and each 

one is a measure of appropriate model fit to the data. For example, IBM’s SPSS 

Amos Graphics (version 22) provides 20 different fit indices; however, there are 

dozens of different fit indices that can be considered (Kline, 2011). Most researchers 

agree that the Chi-Squared test (or Cmin as indicated Amos Graphics) is a basic 

evaluation of model fit for SEM (Kline, 2011 and Hoyle, 1995) and should be 

evaluated first. If this test indicates a bad fit, it should weigh considerably on the 

researcher’s assessment of the model fit. 

Other common fit indices include the Root Mean Square Error of 

Approximation (RMSEA), the Standardized Root Mean Square Residual (SRMR), 

and the Comparative Fit Index (CFI). These are common fit indices that were 

recommended by Kline (2011), Hoyle (1995), Byrne (1994), and Hooper, Coughlan, 

and Mullen (2008). These fit indices are provided by Amos Graphics and are 

therefore easily obtained. They are discussed further in Chapter 2. 

However, other fit indices do exist. These include the Goodness-of-Fit Index 

(GFI), Adjusted Goodness of Fit Statistic (AGFI), Root Mean Square Residual (RMR), 

and others (Hooper, Coughlan, & Mullen, 2008). 

Each fit index is unique and measures model fit in different manners. For 

example, the Chi-Square test is based on the “magnitude of discrepancy” (p. 53) 

between the expected data and the actual data (Hooper, Coughlan, & Mullen 2008). 
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This test is based on the overall model fit, as opposed to the incremental fit (as will 

be discussed below). Although the Chi-Square test can be used to assess any model 

fit distribution; in SEM, the Chi-Square test generally is used to determine variance of 

the data from normality. The Chi-Squared test has several limitations that affect the 

Chi-Square values and can provide erroneous approximation of fit. Factors that can 

inflate or deflate the Chi-Square values include high correlation among observed 

variables, unique variances among variables, and large samples sizes (Kline, 2011). 

Additionally, the Chi-Square test gives little information as to the extent that model 

does not fit (Byrne, 1994). As such, additional statistical measures are necessary to 

determine model fit approximation of the SEM. 

The fit indices for SEM have different limitations and boundary conditions. The 

necessity for numerous fit indices can be explained in two ways. Firstly, fit indices are 

greatly important in the performance of any SEM. SEM that is an improper fit to the 

data would provide inaccurate or erroneous results, and possibly indicate 

relationships that do not exist. Secondly, the process to performing SEM, the 

complexity of the variable matrixes and the sheer volume of analysis required, 

indicate a necessity for numerous fit index models. As the process is rigorous and 

complicated, so too the fit indexes are difficult to simplify. There is currently no single 

fit index that encompasses all the different indices in one comprehensive test. 

(Gullen, 2000) 

The complexity of analyzing the fit indices and the plethora of index tests from 

which to form a model fit assumption, make it necessary to determine when models 

are truly a good fit to the data.  
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Hooper, Coughlan, and Mullen (2008) indicated: 

Given the plethora of fit indices, it becomes a temptation 
to choose those fit indices that indicate the best fit…This 
should be avoided at all costs as it is essentially 
sweeping important information under the carpet. (p. 56) 

 

Hooper, Coughlan, and Mullen (2008) recommended several common fit 

indices to be considered, among which are listed the CFI, the RMSEA and the Chi-

Square tests as the most common. However, the tests listed above were developed 

primarily for social and behavioral science research where the baseline assumption 

for distribution is normal. It is questionable whether these variables provide a good 

indication of model fit under different distributions that are common in the physical 

sciences (i.e. exponential, logarithmic, or uniform). 

Problem Statement 

The purpose of this study is to evaluate the sensitivity of selected fit index 

statistics in determining model fit when the distribution varies from normality, as is 

typically true of data research for the physical sciences. SEM is already being applied 

to many physical science research problems and the reliability and power of the 

model fit indices is questionable. Gullen (2000) discussed how “Non-normal data 

pose problems in structural equation models even if the data are continuous” (p. 19). 

Gullen (2000), however, did not consider the extent to which the problem is imposed, 

or which distributions perform better than others. The extent and power of the fit 

indices in estimating the SEM model fit when normality is violated is therefore of 

interest.  
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Theoretical mathematical and physical science distributions and applied 

physical science data sets will be obtained. Tests for normality will be conducted on 

the applied data sets. These data sets will be sufficiently large to serve as proxies for 

typical physical science distributions. The theoretical distributions and applied data 

sets will then be randomly sampled and subjected to RMSEA, SRMR, and CFI model 

fit index tests. 

Assumption 

1. Data sets from real variables and hypothetical distributions will be 

sampled. It is assumed they are representative of common conditions. 

Limitations 

1. There are dozens of different fit indices; however, only three common fit 

indices (RMSEA, SRMR, and CFI) will be used in this study. 

2. There are limitless distributions possible. In this study, only three or four 

variables encompassing different distributions from several real and 

hypothesized data sets will be analyzed. 

3. The results of the fit indices will vary based on the sample size and 

whether the sample size is balanced or unbalanced between variables. 

This study will be limited to three or four sample size groups and to 

balanced sample sizes between variables. 

4. The results of the fit indices will vary based on the chosen alpha level. 

In this study, only one alpha level (of 0.05) will be used. 
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Definition of Terms 

1. Observed Variables: Variables consisting of data that are measurable 

and provided directly from an instrument. 

2. Latent Variables: Variables that consist of a combination of several 

observed variables, similar to a construct. 

3. Model Specification: The process of arranging the observed and latent 

variables into an SEM model, and specifying their relationships 

(correlations, errors, and direction). 

4. Model Identification: The process of identifying the degrees of freedom 

of an SEM model. 

5. Correlation: The relationship or association between two variables. The 

correlation can be quantified using the correlation coefficient. 

6. Error: Deviation of the data from expected value that cannot be 

attributed to a model or any substantial explanation. 
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CHAPTER 2 REVIEW OF LITERATURE 

Overview of SEM 

SEM is a comprehensive data analysis technique that allows researchers 

greater flexibility in determining the magnitude and direction of relationships between 

variables. A primary advantage of SEM lies in the creation of a model. These models 

can graphically provide quantitative values of variable relationships, correlations, and 

even error. Other advantages were offered by Chin (1998). Benefits of SEM over 

“first-generation techniques” (p. vii) (such as factor analysis, principal components 

analysis, multiple regression, and discriminant analysis) are listed below: 

1. Ability to model relationships between variables 

2. Ability to model error in observed variables 

3. Ability to conduct a priori tests against empirical data (such as in 

Confirmatory Factor Analysis) 

4. Hesketh, Skrondal, & Pickles (2004) offered a fourth advantage in that 

SEM can be used in the development of latent variables of “hypothetical 

construct” (p. 168).  

SEM can be considered as a conglomeration of several common “first-

generation” (Chin, 1998, p. vii) statistical approaches. In running SEM, statistical 

approaches that are simulated include correlation, multivariate regression, path 

analysis, maximum likelihood, generalized least squares, and factor analysis. It is for 

this reason that the SEM methodology contains many similarities with the 

conventional analytical procedures.  
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These similarities include: 

1. Both are general linear models (Kline, 2011). 

2. Analyses are only valid if boundary conditions are met (Weston & Gore, 

2006) 

3. The techniques do not imply causality (Weston & Gore, 2006) 

4. Researchers can misuse the SEM just as with other, more classical, 

analytical procedures (Weston & Gore, 2006). 

 

Weston and Gore (2006) paradoxically stated:  

“Just as researchers are free (although not encouraged) 
to conduct several different multiple regression models 
until they find a model to their liking, they can also 
analyze models in SEM, identify and remove 
weaknesses in the model, and then present the revised 
model as if it were the originally hypothesized model.” (p. 
723) 

 

One common way that researchers can misuse models includes publicizing 

the fit index measures that indicate a good model fit and neglecting the indices that 

indicate a poor fit. As indicated above, there are a plethora of model fit indices and 

each one measures model fit in a different way. Additionally, as the distribution of the 

samples vary from the boundary conditions, as set forth by the SEM computer 

software (i.e. normality); the fit indices can result in erroneous assessments that can 

inflate model fit statistics. It is therefore of importance to understand how variations 

from normality affect the model fit equations. 
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Kline’s (2011) Six Steps to Performing SEM 

SEM is a relatively new statistical procedure that is tailored for a rigorous 

analytical approach of data research. Even using a computer program to solve for the 

matrix algebra and determine the output results, the approach for analyzing the 

results and for selecting the measures is complex. Kline (2011) simplified the 

procedures by identifying six steps to performing SEM. These steps, stated in 

Chapter 1, are explained in fuller detail below. 

Step 1 - Specifying the Model: Specifying the model includes analysis of the 

relationships between the variables and drawing a model diagram. Model diagrams 

include endogenous and exogenous variables that are typically represented by 

arrows, indicating direction. Correlations are typically represented by a circular, two-

direction arrow, indicating a strong relationship between two variables. SEM models 

assume that variables without correlations are not highly correlated. Ideal SEM 

models include primary variables that are moderately correlated with coefficient 

values ranging between 0.4 and 0.7. 

Step 2 - Model Identification: Model identification is necessary prior to 

beginning model estimation to determine whether it is “theoretically possible for the 

computer to derive a unique estimate of every model parameter.” (Kline, 2011, p. 93). 

An under-identified model cannot provide reliable model results. Therefore, prior to 

model estimation, it is imperative to determine that the model is over-identified or 

just-identified. Gullen (2000) compared this to algebra, as numerous equations and 

variables are required. “Unlike in algebra, however, there is a benefit to having more 

equations than variables. These over-identified models permit the calculation of fit 
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statistics for the evaluation of model fit.” (p. 1). In other words, just-identified models 

can allow for a unique solution but the fit indices would not provide valid results for 

determination of model fit (see Step 4). 

Under-identified, just-identified, and over-identified designations are a function 

of the model complexity. SEM analyses generally provide improved results with a 

more parsimonious model. A parsimonious model is a model with a larger degree of 

freedom. The degrees of freedom can be calculated per Kline (2011) using the 

following equation: 

mdf p q    Eq. (1) 

 1 / 2p v v   , Eq. (2) 

where v = number of observed variables, and q = number of estimated parameters. 

A model with fewer estimated parameters (i.e. correlations, error terms, etc.) 

and many observed variables would be more parsimonious. Parsimony is preferable, 

and many model fit indices include an adjustment to account for parsimonious 

models (refer to the subsection “Approximate Fit Indices” below). 

Step 3 – Selecting the Measures: Selecting the measures and 

collecting/preparing data involve determining whether the data are appropriate for an 

SEM model. This includes ensuring that extreme collinearity does not occur. Extreme 

collinearity occurs when the primarily (latent) variables are highly correlated with 

each other. This step also includes dealing with outliers and missing data as 

prescribed by standard statistical procedures. 

Step 4 – Model Estimation: Model estimation means determining whether the 

SEM is a good estimation of the data. This involves determining model fit based on 
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appropriate fit indices, interpreting parameter estimates, and considering equivalent 

or near-equivalent models. Fit indices are tests that indicate whether the model is 

statistically a good fit for the data. There are dozens of different fit indices. Indeed, 

new ones are being developed with regularity (Kline, 2011). Determining appropriate 

model fit based on fit indices can be a complicated procedure. This will be further 

discussed below. 

Interpreting model parameters includes examination to determine whether the 

model properly represents the data via a low coefficient of non-determination and 

high standardized regression weights. If the model is a poor or basically adequate fit, 

it is appropriate to look at several similar models to determine whether the new 

models are better. 

Step 5 – Re-specifying the Model: Re-specifying the model includes changing 

the SEM to determine whether the re-specified model is a better fit for the data. This 

can include either dropping an arrow or dropping/adding a correlation. 

Step 6 – Reporting the Results: Reporting the results includes publishing or 

writing a report of the results of the research and specifying a correlation or 

covariance matrix so that the results can be reproduced by another researcher, if 

desirable. 

The purpose of the six steps above is to ensure that a model contains 

appropriate variable measures and variable relationships and provides the best 

model representation of the data. A SEM is only as good as the data fit and error 

magnitude. A poor model can result in false determinations of variable relationships 

and causal direction. 
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SEM and the Social Behavioral Sciences 

SEM was specifically developed for the use of analysis of social and 

behavioral science data. Weston and Gore (2006) discussed how the necessity for 

developing SEM methodology was born on the complex and multivariable nature of 

social and behavioral science research.  

Weston and Gore (2006) wrote: 

“For example, noting the mostly univariate nature of 
extant eating-disorder research, Tylka and Suich (2004) 
hypothesized that eating-disorder patterns in adult 
women were a function of personal, socio-cultural, and 
relational factors. Furthermore, they offered hypotheses 
about how these factors interact in complex ways to 
explain symptom severity” (p. 719) 
 

Additional examples of the complex nature of the variables and their 

relationships were discussed. Weston and Gore (2006) indicated researchers were 

reluctant to perform studies on complex issues because multivariate analysis was 

simply insufficient to meet their demands. 

The boundary conditions for performing SEM and determining model fit are 

steeped in the conditions typical of social and behavioral sciences. These boundary 

conditions include multivariate normality (Gullen, 2000; Kline, 2011; Reinartz, 

Echambadi, & Chin, 2002; Tomarken & Waller, 2005). Although standard for most 

social and behavioral science parametric statistical tests, SEM modeling does not 

require homogeneity of variance (Baozzi & Youjae, 1989). 
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SEM and the Physical Sciences 

Due to the capability of improving quality of life by analyzing data for complex 

research studies, SEM is increasingly being used in physical science research (Kelly, 

2011 and Ewing, Hamidi, Gallivan, Nelson, & Grace, 2014). There are many 

similarities between social and behavioral science and physical science data that 

make this transfer of methodologies apparently appropriate. Both data sets are 

parametric, can be assigned descriptive statistic values, can be formulated to provide 

frequency diagrams, and can be used with nonparametric tests. 

However, physical science data differ from the social behavioral science in 

several ways. Construct validity does not exist in the physical sciences, as the 

science deals with physical data that can be measured. Therefore, there is no need 

for the development of a measure for a hypothetical construct. Furthermore, physical 

science data have different distributions than that of social and behavioral science. 

Although social and behavioral science data tend to be centered on the normal 

distribution, physical science data can have virtually almost any distribution. The 

following graphs were taken from several articles, and show various distributions for 

physical science research. 
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Figure 1. Ground Floor Area Frequency [Data Provided By Kelly (2011)]. 

 
Figure 2. Ground Floor Area Q-Q Plot [Data Provided By Kelly (2011)]. 
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Figure 3. Degree Day Frequency [Data Provided By Kelly (2011)]. 

 
Figure 4. Degree Day Q-Q Plot [Data Provided By Kelly (2011)]. 
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Figure 5. Energy Pattern Frequency [Data Provided By Kelly (2011)]. 

 
Figure 6. Energy Pattern Q-Q Plot [Data Provided By Kelly (2011)]. 
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Figure 7. Total Annual Cost Frequency [Data Provided By Kelly (2011)]. 

 
Figure 8. Total Annual Cost Q-Q Plot [Data Provided By Kelly (2011)]. 
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Table 1 
 
Test of Normality for Variables from Figures 1, 3, 5, and 7 

 
Kolmogorov-Smirnova 

Statistic df Sig. 
Floor Area (m2) .112 19265081 .000 

Degree Days .226 19265081 .000 
Energy Pattern Sum .226 19265081 .000 

Annual Gas Heating Costs .132 19265081 .000 
a. Lilliefors Significance Correction 

 

 

 
Figure 9. Diameter of Sewer Frequency 
[Data Provided By Sinfield & Einstein (1998)]. 
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Figure 10. Diameter of Sewer Q-Q Plot 
[Data Provided By Sinfield & Einstein (1998)]. 

Table 2 
 
Test of Normality for Variables from Figure 8 

 Kolmogorov-Smirnova  Shapiro-Wilk 
 Statistic df Sig.  Statistic df Sig. 

Diameter_feet .197 52 .000  .886 52 .000 
a. Lilliefors Significance Correction 
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Figure 11. Tunnel Pipe Length Frequency  
[Data Provided By Yeh, Lin, & Tsai (2008)]. 
 

 
Figure 12. Tunnel Pipe Length Q-Q Plot  
[Data Provided By Yeh, Lin, & Tsai (2008)]. 
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Table 3 
 
Test of Normality for Variables from Figure 10 

 
Kolmogorov-Smirnova  Shapiro-Wilk 

Statistic df Sig.  Statistic df Sig. 
Pipe_Length_Meters .159 39 .014  .910 39 .004 

 a. Lilliefors Significance Correction 
 

As can be seen, the distributions above are non-normal. In Tables 1, 2, and 3, 

the tests of normality (Kolmogorov-Smirnov and Shapiro Wilk) significance values are 

less than the alpha value of 0.05. Therefore, the null hypothesis that the data are a 

normal distribution is rejected and the data are considered to be non-normal (to a 

statistically significant degree). 

It becomes apparent that data from the physical sciences are typically non-

normal. Hence, the question arises of how well would SEM perform using physical 

science data that are non-normal? Part of determining the answer to that question 

would include examination of the fit indices that measure the model fit of the data. 

These fit indices are essential in estimating the SEM model, for without a proper 

model fit, the SEM model would become ineffectual, regardless of the other output 

results. 

Fit Indices Background 

Model fit indices, being an integral part of the SEM process, have a short but 

rabid history. Initially, Chi-Square tests were used; however, the test was proved 

ineffectual due to the large sample sizes that are required for SEM analysis (Gullen, 

2000). As a result, various indices were developed to supplement the model fit 
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analysis (Bollen, 1989). Fit indices can be classified into two categories – Model Test 

Statistic and Approximate Fit Index (Kline, 2011). 

Model Test Statistics and Chi-Squared 

In the model test statistic, the model data are compared to a baseline model. 

In this case, the baseline model is a covariance matrix of a sample of the data. If the 

covariance matrix of the overall data matches the covariance matrix of the sample, 

the model is considered a good fit. If the matrixes differ, the discrepancies using the 

model need to be explained. (Kline, 2011) 

Model test statistics are typically developed as a “badness-of-fit” (Kline, 2011, 

p. 193) test. This means that failure to reject the null hypothesis indicates a good fit. 

Therefore, it is preferable for the resultant model test statistic to be as small as 

possible. Kline (2011) indicated that badness-of-fit tests are weak, as “lack of 

evidence to disprove an assertion…does not prove that the assertion is true.” (p. 

294). 

The most basic model test statistic is the Model Chi-Square test. This test was 

developed by Karl Pearson (1900) and has withstood the test of time. It is probably 

the most well-known and accepted fit statistic. Its value lies in that it is nonparametric. 

The formula, according to Neave and Worthington (1988) is: 

 ሺை௕௦௘௥௩௘ௗିா௫௣௘௖௧௘ௗሻమ

ா௫௣௘௖௧௘ௗ
) Eq. (3) 

Therefore, the Chi-Squared statistic is a percentage of the squared deviation from the 

expected over the expected score. A large Chi-Squared statistic indicates a large 

deviation from the expected distribution. The critical score is based on a Chi-Squared 

distribution table, Table 1 in the Appendix A.  



24	
	

	
	

In SEM computer software programs, the Chi-Squared test statistic is used to 

test for multivariate normality. However, as stated above, the basis of the test itself is 

nonparametric. This test can therefore be used to determine how well the SEM fit 

indices reflect the fit of the samples to the expected distribution, even when the data 

are expected to be non-normal. 

Although the Chi-Squared test is nonparametric, the test is subject to other 

factors that can affect the reliability of the Chi-Squared test results. Reliability in SEM 

refers to the “ability of an item to perform a required function under stated conditions 

for a stated period of time” (Naresky, 1970, p. 199) and the probability that a test will 

perform or provide results according to its specified function (Naresky, 1970). In 

essence, it is the numerical value of the correlation coefficient. In other words, a test 

is considered reliable if it provides consistent results with consistent input values. A 

test that is not reliable would result in various values, even when situations do not 

differ.  

A common measure of reliability is the Pearson Correlation Coefficient. The 

formula according to Hinkle, Wiersma, and Jurs (1998) is: 

௫௬ݎ ൌ
௡௑௒ିሺ௑ሻሺ௒ሻ

ඥሾ௡௑మିሺ௑ሻమሿൈሾ௡௒మିሺ௒ሻమሿ
 Eq. (4) 

In the equation above, the sample size value ‘n’ is included in the denominator. 

Therefore, reliability is sensitive to attenuation. Also, larger variances are better 

‘tolerated’ when calculated reliability for data sets of large sample sizes. Depending 

on the application, a test may considered reliable when the calculated reliability 

coefficient is at least 0.7 or higher (indicating a strong correlation). 
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Factors that can affect the reliability of the SEM Chi-Squared tests include 

large correlations among variables, unique variance, and large sample size (Kline, 

2011). When observed variables are highly correlated, the Chi-Squared value tends 

to increase. Unique variances among variables, which are a result of score 

unreliability, result in a loss of statistical power. As the Chi-Squared test is a 

badness-of-fit test, the loss of power reduces the probability of determining a poor 

model fit. As indicated above, the Chi-Squared value tends to increase with sample 

size.  

Approximate Fit Indices 

The second type of fit statistic is the approximate fit index. The difference 

between approximate fit indices and model test statistics is that fit statistics are based 

on continuous measures. In other words, there is not a dichotomous conclusion to 

either reject or accept a null hypothesis. The value of the fit statistic, as it compares 

to an ideal value in magnitude, provides a representation of the fit. For example, the 

ideal value for CFI fit index is 1.0. A model resulting in a CFI of 0.90 would be a 

better fit than a model resulting in a CFI value of 0.85. As the null hypothesis is not 

rejected at a decided alpha value, the magnitude of the value has meaning. 

Therefore, these fit indices can be considered as “rules-of-thumb” (Kline, 2011, p. 

197) as opposed to “golden rules” (Kline, 2011, p. 197). 

Approximate fit indices do not “distinguish between what may be sampling 

error and what may be real covariance evidence against the model” (Kline, 2011, p. 

195). Thus, they do not provide information in regards to specification error. These 
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tests are typically goodness-of-fit tests, which mean the ideal index statistic occurs at 

a value of a specified magnitude (such as 1.0 as opposed to zero). 

Approximate fit indices provide approximations of model fit in four ways – 

absolute, incremental or comparative, parsimony-adjusted, and predictive (Kline, 

2011). Absolute fit indices approximate fit by determining what proportion of a sample 

covariance matrix is explained by the model, in a similar fashion as the coefficient of 

determination (R2). Incremental fit indices determine fit by comparing the model fit to 

a baseline model of zero population covariances among the variables. As Miles & 

Shevlin (2007) succinctly signified, “The indices effectively say ‘How well is my model 

doing, compared with the worst model that there is?’” (p. 870). Parsimony-adjusted 

indices provide a penalty for complex models. Predictive fit indices compare model fit 

to a sample group of randomly selected replicated samples based on the population. 

These categories are not mutually exclusive. An approximate fit index can fall into 

one or multiple of the categories indicated above. The most common of the 

approximate fit indices are RMSEA, SRMR and CFI. These tests are described in 

further detail below. 

Root Mean Square Error Approximation (RMSEA) 

The RMSEA is a parsimony-adjusted index. It is not a measure of central 

tendency but follows a non-central Chi-Square distribution. As such, the RMSEA has 

a high and a low value that are provided by most SEM software. The RMSEA is a 

badness-of-fit test, therefore a good fit indicator occurs when the RMSEA low value is 

less than 0.05 and the high value is less than 0.10. (Kline, 2011).  
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As a parsimony-adjusted index, the RMSEA adjusts for parsimonious 

characteristics. The mathematical construct of the index is divided by degrees of 

freedom of the SEM model. Kline (2011) specified the mathematical construct of the 

index. 

ܣܧܵܯܴ ൌ ට
ಾ
మ ିௗ௙ಾ

ௗ௙ಾሺேିଵሻ
, Eq. (5) 

where ݀ ெ݂ = degrees of freedom of the SEM, N = sample size, and ଶெ = Chi-

Squared statistic value. 

A small Chi-Squared value would indicate a good model fit. A model with a 

large degree of freedom, or a parsimonious model, would result in a small RMSEA 

value. In other words, parsimonious models that have small deviations would indicate 

a good model fit per this index. The equation is further divided by the sample size. 

Therefore, the parsimonious effect of the equation increases as sample size 

increase. 

The limitations of RMSEA are obvious. The index contains inherent prejudices 

towards models that have large sample sizes and large degrees of freedom. A model 

with a moderate to large variation from the expected values, but with a large sample 

size, could pass the RMSEA criteria for model fit. 

Standardized Root Mean Square Residual (SRMR)  

Although the name is similar to the RMSEA, the two indices are quite different 

(Iacobucci, 2009). As per its name, the SRMR is a measure of the standardized value 

of the square root of the mean absolute covariance squared residual. As such, a 

good fit value would be close to zero. Hu and Bentler (1999) indicated that a 
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maximum allowable value for a good fit would be approximately 0.09. Kline (2011) 

argued that this number is large, and can allow for large deviations. “This is because 

if the average absolute correlation residual is around 0.08, then many individual 

values could exceed this value, which would indicate poor explanatory power at the 

level of pairs of observed variables” (p. 209). Therefore, Kline (2011) recommended 

reviewing the matrix of correlation residuals and describing the patterns in a report, 

as opposed to merely stating the fit statistic.  

The mathematical construct for the SRMR is provided by Iacobucci (2009) and 

Schermelleh-Engel, Moosbrugger, & Muller (2003). 

ܴܯܴܵ ൌ ඩ
೔సభ
೛ ೕసభ

೔ ቈ
ቀೞ೔ೕష഑ෝ೔ೕቁ

ቀೞ೔೔ೞೕೕቁ
቉

మ

ೖሺೖశభሻ
మ

,  Eq. (6) 

where ݇	= observed endogenous variables + observed exogenous variables. Sij, Sii, 

and Sjj = value from the covariance matrix, and ij = value from the expected matrix 

covariance. 

Comparative Fit Index (CFI) 

The CFI is an incremental fit index and a parsimony-adjusted index, where the 

data set is compared to the Chi-Squared values of a baseline model. This test 

performs well, even with small sample sizes. This is a goodness-of-fit test where a 

value of ‘one’ indicates the best fit. CFI was developed with the assumption that 

latent variables are not correlated (Hooper, Coughlan, and Mullen, 2008). Therefore, 

models with highly correlated latent variables can result in an inaccurate assessment 

of model fit. 
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The mathematical construct is a function of the Chi-Squared value and 

degrees of freedom of the model. The equation, as provided by Kline (2011) is written 

below: 

ܫܨܥ ൌ 1 െ
ಾ
మ ିௗ௙ಾ
ಳ
మିௗ௙ಳ

, Eq. (7) 

where ݀ ௑݂ = degrees of freedom of the SEM/Baseline models, ଶ௑ = Chi-Squared 

statistic value for the SEM/Baseline models, M = SEM model, and B = Baseline 

model. 

This equation results in higher values for models with larger degrees of 

freedom, resulting in a more favorable fit statistic. Hu & Bentler (1999) provided a 

minimum recommended CFI value of 0.95 for acceptable fit criteria. 

Fit Indices in Computer Software 

Although the model fit indices provided by SEM computer software establish 

normality as the baseline condition (Arbuckle, 2011), the actual formulas for 

calculating the model fit numerical value are apparently nonparametric. It would 

therefore be reasonable to assume that using appropriate baseline or expected 

model distributions, the model fit index equations could be used to assess model fit 

for any distribution. However, the robustness of the formulas have not yet been 

assessed, and the capability of the indices to measure model fit for physical science 

data is of great interest. 
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CHAPTER 3 METHODOLOGY 

Procedures 

The purpose of this study is to evaluate the ability of the SEM methodology to 

obtain an accurate model for the physical sciences. SEM methodology was 

developed for the social and behavioral sciences. Typical software, such as Amos 

Graphics, is programmed with normality as a baseline condition, although fit indices 

apparently do not require normality. It is the intent of this study to determine whether 

common fit indices (e.g. RMSEA, SRMR, & CFI) provide accurate estimations of fit 

when data are sampled from non-normal distributions, as is typical for the physical 

sciences. 

The validity of model fit indices will be analyzed for three study conditions. 

They are (1) mathematical distributions, (2) theoretical physical science distributions, 

and (3) applied physical science data sets.  

(1) The mathematical distributions will be based on the logarithmic and sine 

wave distributions. These are commonly encountered in the physical science. 

(2) The theoretical physical science distribution will be based on an equation 

developed for modeling fragment size distribution and was developed by Cheong, 

Reynolds, Salman, & Hounslow (2004). The equation of distribution is written below: 

ݕ ൌ 1 െ ݌ݔ݁ ቂെ ቀ ௫
௫೎
ቁ
௠
ቃ, Eq. (8) 

Where y = volume-fraction of fragment size of ݔ, ݉, and ݔ௖; ݉ = distribution width; 

and ݔ௖ = fragment size ratio of 1-1/e. 

The mathematical equation above will be limited to the values indicated in 

Figure 13.  
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Figure 13. Glass Fragments Cumulative Size Distributions Based on Impact 
Velocity [Taken from Cheong, Reynolds, Salman, & Hounslow (2004, p. 230)]. 
 

(3) The applied physical science data sets will consist of real data, obtained 

through physical science research. The Shapiro Wilk and/or Kolmogorov-Smirnov 

tests will be used to determine if the distributions of the data sets are normal. 

Data sets for study conditions 2 and 3 listed above will be obtained or 

developed using the mathematical formula indicated above. Samples from each of 

the data sets for all three study conditions will be obtained using a set seed value 

and pseudo-random number generator. This process will be repeated 10,000 times 

and the results analyzed using a Monte Carlo simulation. Each sample set will be 

analyzed using the Chi-Squared, and then using the RMSEA, SRMR, and CFI fit 

indices. 
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As the sample sets for study types 1 and 2 will be obtained from a 

mathematical formula of known distributions, the fit indices for the randomly selected 

samples should indicate a perfect model fit. Therefore, the model fit indices will be 

assessed to determine how closely the resultant values represent a perfect model fit. 

As the sample sets for study type 3 will be obtained from real data, the sample 

sets will not have an exact known distribution. Therefore, assessment of model fit 

performance will be based on the correlation of the model fit indices in assessing a 

poor or good model fit. To this purpose, the model fit index test results will be 

standardized such that a value of 1.0 will equal a perfect model fit for all fit index 

tests. If the test results have a high correlation (value of 0.7 or greater), the model fit 

indices will be considered a good measure of model fit for non-normal distributions. If 

the results have a low correlation (value of 0.3 or lower), the model fit indices would 

be considered a poor measure of fit for non-normal distributions. 

Identification of Extraneous Variables/Sources of Errors 

1. Only 3 out of possibly dozens of fit indices will be used in this study. It is 

possible that other fit indices would provide different results. 

2. The Chi-Squared Test is the standard for identifying model fit. If the test 

results in incorrect estimations (as typically happens in one out of 

twenty cases when the alpha value is set to 0.05), then the estimation 

of the validity of the model fit indices could be incorrect. 
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Sampling Plan  

A pseudo-random number generator with a set seed value will be used to 

select the samples from the theoretical distributions and applied data sets. Fortran 

and RStudio both contain commands for random sampling of from a data set.  

Data Gathering Methods 

Data will be gathered from existing physical science research projects. No new 

data will be collected. 

Data Analysis Software 

Data analysis software will include Fortran 90 programming software with 

Compaq Visual Fortran 6.6c, RSTudio, and Notepad++ software programs. 

Input Data Format 

The input data will be formatted as metric (ratio) numbers of finite values. 

Nominal and Ordinal data are not typically used in the physical sciences. 

Statistical Tests 

Statistical tests and fit indices used to analyze the model fit for the SEM model 

are the Chi-Squared Test and the RMSEA, SRMR, and CFI fit indices.  

Statistical Hypotheses 

The null hypothesis for these tests will depend on whether the prospective test 

is a goodness-of-fit or badness-of-fit test. The null hypothesis for a goodness-of-fit 

test is that the data are a poor fit. The null hypothesis of a badness-of-fit test is that 

the data are a good fit.  
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Nominal Alpha 

The alpha level for all statistical tests will be a value of 0.05. This value is 

standard for many physical science studies (Guralnik et al., 2000; Nichols, Morgan, 

Chabot, Sallis, & Calfas, 2000; and Petit et al., 2004). 

Description of Computation Method 

The applied data (study type 3) will be uploaded into Fortran 90 or RSTudio 

with the Lavaan library package to assess the frequency distribution and variation 

from normality. The data from the theoretical physical science distribution (study type 

2) will be input into Fortran 90 or RStudio to develop the data set based on the 

mathematical formulas with a sample size sufficient for samples to be taken. 

Samples for all three study types will be randomly selected using Fortran 90 or 

RStudio with IMSL subroutines (indicated above). Estimation of model fit indices and 

Chi-Squared test values will be computed using Fortran 90 or RStudio. Computation 

of the correlation between the Chi-Squared test values and the model fit indices will 

be conducted using either Fortran 90 programming software with Compaq Visual 

Fortran 6.6c or RStudio. 

Presentation of Results 

The results will be presented in tabular and graphical format. A graphic 

showing the real and hypothetical data frequency distribution will be provided. Tables 

indicating Chi-Square, fit indices, and correlation values will also be provided. An 

analysis of the results, including assessment of the correlation values described 

above, will be provided in a written format. 
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CHAPTER 4 RESULTS 

Due to unintended findings, discussed below, the presentation of the results 

has changed from the order of presentation in Chapter 3. A data set containing five 

variables (Torque at Transmission, Engine Speed, Vehicle Speed, Accelerator Pedal 

Position, and Fuel Used) was provided by Ford Motor Company. These data were 

obtained as part of the third data set type, the applied physical science data set 

consisting of real data obtained through physical science research. The data set 

originally contained 908,900 data points. After cleaning the data by deleting all 

accelerator pedal position values of 0.00, the revised data set contained 181,524 

data points used in the analyses. 

Test of Normality 

The variables were tested for normality using RStudio to access Revolution-R 

(R). The results were compiled in Table 4. Due to a limitation of RStudio, the Shapiro-

Wilk test could only be performed on a data set with a maximum sample size of 

5,000. Therefore, a Monte Carlo simulation of 50,000 iterations of randomly selected 

samples with a sample size of 100 was performed. 

 
Table 4 
 
Shapiro-Wilk Test of Normality 

Torque at 
Transmission Engine Speed Vehicle Speed 

Accelerator 
Pedal Position Fuel Used 

0.1620185 0.008070679 0.001354129 0.1450409 0.0132040 

 

The distributions for three of the five variables were non-normal, with nominal 

alpha set to 0.05. Only Torque at Transmission and Accelerator Pedal Position were 
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not statistically significantly different from a normal distribution. Hence, typical 

physical science data sets could have both normal and non-normal variables within 

the same analysis. 

Monte Carlo Results for Model Fit – Four Variables 

Six Monte Carlo simulations of varying sample sizes and with 10,000 iterations 

of a Structural Equation Model (SEM) with four variables were performed in RStudio 

using the Lavaan library package. Sample sizes for the Monte Carlo simulations were 

n = 10, 20, 30, 50, and 250. The exogenous variables in the SEM were Accelerator 

Pedal Position, Engine Speed, and Vehicle Speed. The endogenous variable was 

Torque at Transmission. The results of the analyses were summarized in Table 5. 

The full output from RStudio is presented in Figures B1 through B6 in Appendix B. 

Model fit improved as sample size decreased, as indicated in Table 5. 

Indication of a poor model fit approximately 100% of the time for sample size of 250 

and 88% of the time for sample size of 20 resulted when examining the trends for 

model fit index RMSEA Lower. Indication of a poor model fit approximately 91% of 

the time for sample size of 250 and approximately 84% of the time for sample size of 

20 resulted when examining model fit index results for CFI. Indication of a poor model 

fit approximately 100% of the time resulted when examining the results for the other 

model fit indices (Chi-Squared, RMSEA Upper, and SRMR). 
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Table 5 
 
Monte Carlo Simulation Percentage of Model Fit Indices  
Indication of Poor Model Fit  
Sample Size 250 100 50 30 20 10 

Mean Correlation 0.46 0.43 0.41 0.40 0.39 0.04 

Mean Degrees of 
Freedom 

3 3 3 3 3 0.34* 

Chi-Squared 100% 100% 100% 100% 100% N/A** 

RMSEA Lower 100% 99% 95% 91% 88% N/A** 

RMSEA Upper 100% 100% 100% 100% 100% N/A** 

SRMR 100% 100% 99% 99% 100% N/A** 

CFI 91% 83% 81% 83% 84% N/A** 

 
*Result for mean degrees of freedom for 10,000 iterations was not a whole number.  
This implies that the degrees of freedom varied between repetitions. 
**The results for model fit did not reflect a logical reality. (i.e. The percentage of time  
that RMSEA Lower was less than 0.05 was eleven percent and the percentage of  
time that RMSEA Lower was greater than 0.05 was ten percent. These values do not 
add to 100%) 

 

Correlation decreased as sample size decreased; from r = 0.46 for a sample 

size of n = 250 to r = 0.39 for a sample size of n = 20. As the correlation approached 

zero (e.g., sample size of n = 10), the results for the model fit from the Monte Carlo 

simulation resulted in illogical values. The percentages of greater than and less than 

critical values did not result in percentage numbers that added to 100%. This is 

shown in greater detail in Figure 14. 
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sample size=10 
repetitions=10000 
mean correlation=0.0421997270262573 
mean DOF*=0.3432 
chisq a**<0.05=0.1144-> This means that p-chi-squared was less than 0.05 11% of 
the time 
chisq a**<0.01=0.1143-> This means that p-chi-squared was less than 0.01 11% of 
the time 
RMSEA (lower)**<=0.05=0.0186-> This means that RMSEA Lower is less than 0.05 
2% of the time 
RMSEA (lower)**>0.05=0.0958-> This means that RMSEA Lower is greater than 
0.05 10% of the time 
RMSEA (upper)**<=0.1=0-> This means that RMSEA Upper is less than 0.1 0% of 
the time 
RMSEA (upper)**>0.1=0.1144-> This means that RMSEA Upper is greater than 0.1 
11% of the time 
SRMR**<=0.09=0-> This means that SRMR is less than 0.09 0% of the time 
SRMR**>0.09=0.1144-> This means that SRMR is greater than 0.09 11% of the time 
CFI**<0.9=0.0994-> This means that CFI is less than 0.9 10% of the time 
CFI**<0.75=0.0766-> This means that CFI is less than 0.75 8% of the time 
CFI**<0.5=0.0413-> This means that CFI is less than 0.5 4% of the time 
 
*The mean degrees of freedom did not result in a whole number, implying varying  
degrees of freedom between repetitions.  
**The results for model fit did not reflect a logical reality. (i.e. The percentage of time  
that RMSEA Lower was less than 0.05 was eleven percent and the percentage of  
time that RMSEA Lower was greater than 0.05 was ten percent. These values do not 
add to 100%) 
 
Figure 14. Lavaan Output for Sample Size of 10 and Four Variables, Repetitions 
= 10,000. 
  



39	
	

	
	

Monte Carlo Results for Model Fit – Five Variables 

A Monte Carlo simulation was performed for a second data set with five 

variables. The second data set included the cleaned data from the four variable SEM 

analyses and a fifth variable of Fuel Used. The exogenous variables in the SEM were 

Accelerator Pedal Position, Engine Speed, Vehicle Speed, and Torque at 

Transmission. The endogenous variable was Fuel Used. 

Initially, the intent was to perform six Monte Carlo simulations with sample 

sizes and iterations, the same as for the four variable SEM analyses. However, the 

results of the analysis with sample size of 250 were illogical, similar to those of the 

four variable analysis with sample size of n = 10 (refer to Figures 14 and 15). Further 

analyses demonstrated Fuel Used had a small correlation with the other four 

variables in the analysis, as noted in the correlation coefficient matrix compiled in 

Table 6. 

 
Table 6 
 
Correlation Matrix 

Variable 
Torque at 

Transmission 
Engine 
Speed 

Vehicle 
Speed 

Accelerator 
Pedal 

Position 
Fuel 
Used 

Torque at 
Transmission 

1.000 0.404 0.275 0.968 0.007 

Engine Speed 0.404 1.000 0.727 0.391 0.022 

Vehicle Speed 0.275 0.727 1.000 0.210 0.030 

Accelerator Pedal  
0.968 0.391 0.210 1.000 0.007 

Position 

Fuel Used 0.007 0.022 0.030 0.007 1.000 
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Sample Size=450 
repetitions=10000 
mean correlation x1&z=0.000462070478175039 
mean correlation x2&z=0.0025020921013811 
mean correlation x3&z=0.00227332378855168 
mean correlation x4&z=0.000598797833551206 
mean DOF= numeric(0)* 
chisq a**<0.05=0.0325-> This means that p-chi-squared was less than 0.05 3% of 
the time 
chisq a**<0.01=0.0325-> This means that p-chi-squared was less than 0.01 3% of 
the time 
RMSEA (lower)**<=0.05=0-> This means that RMSEA Lower is less than 0.05 0% of 
the time 
RMSEA (lower)**>0.05=0.0325-> This means that RMSEA Lower is greater than 
0.05 3% of the time 
RMSEA (upper)**<=0.1=0-> This means that RMSEA Upper is less than 0.1 0% of 
the time 
RMSEA (upper)**>0.1=0.0325-> This means that RMSEA Upper is greater than 0.1 
3% of the time 
SRMR**<=0.09=0-> This means that SRMR is less than 0.09 0% of the time 
SRMR**>0.09=0.0325-> This means that SRMR is greater than 0.09 3% of the time 
CFI**<0.9=0.0325-> This means that CFI is less than 0.9 3% of the time 
CFI**<0.75=0.0325-> This means that CFI is less than 0.75 3% of the time 
CFI**<0.5=0.0325-> This means that CFI is less than 0.5 3% of the time 
 

*RStudio was not able to calculate the degrees of freedom. 

** Results indicated that RMSEA Lower was less than 0.05 zero percent of the time  
and greater than 0.05 three percent of the time. These values do not add up to  
100%. 
 
Figure 15. Lavaan Output for Sample Size of 250 and Five Variables, 
Repetitions = 10,000. 
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Second Analysis – Determine Minimum Correlation Coefficient for SEM 

A mutual characteristic exhibited by the five variable analysis and the four 

variable analysis with sample size of n = 10 is the low correlation values associated 

with the model. Apparently, when correlation was low the results of the model fit were 

inexplicable. This unintended outcome led to conducting additional research to 

determine what constituted a low correlation, and whether there was a minimum 

allowable correlation value between variables that is a prerequisite for a SEM to be 

meaningful. 

Hence, additional Monte Carlo simulations were conducted. Based on 1,000 

repetitions, further analyses included an SEM model of four variables with input 

values consisting of a correlation matrix of numbers of randomly selected values 

limited to a specified range. An indication of the legitimacy of the model fit indices 

would be an indication of poor model fit, because the input correlation values for the 

four variables had no relationship and were randomly selected. An indication of good 

model fit would signify an illegitimate measurement. 

The first Monte Carlo simulation included a correlation matrix of random 

values from a range of 0.04 plus or minus 0.015. All model fit indices results included 

in the analyses (Chi-Squared, RMSEA Lower, RMSEA Upper, SRMR, and CFI) were 

an indication of a poor model fit 0% of the time. Refer to Table 7 below.  
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Table 7 
 
Monte Carlo Simulation Percentage of Model Fit Indices  
Indication of Poor Model Fit  
Correlation Matrix Magnitudes Range of 0.04 Plus or Minus 0.015 

Sample Size 50 100 150 200 300 500 

Chi-Squared 0% 0% 0% 0% 0% 0% 

RMSEA Lower 0% 0% 0% 0% 0% 0% 

RMSEA Upper 0% 0% 0% 0% 0% 0% 

SRMR 0% 0% 0% 0% 0% 0% 

CFI 0% 0% 0% 0% 0% 0% 
 

As the correlation matrix values were increased in magnitude, the results of 

the model fit indices became illogical. The output values for the model degrees of 

freedom varied between repetitions. Furthermore, the percentages of greater than 

and less than critical values did not result in percentage numbers that added to 

100%. These illogical results are similar to those that occurred in the four and five 

variable SEM analyses indicated in the sections above. The model fit indices results 

ceased to be illogical as the correlation magnitudes were continuously increased, 

and instead the results were an indication of a poor model fit with increasing 

reliability. At a certain correlation magnitude (e.g. when correlation was equal to 0.08 

plus or minus 0.015 as in Table 11), the results of the model fit indices were an 

indication of a poor model fit for the conditions studied for all Monte Carlo repetitions. 

The same applies to Tables 11, 19, 21, 27, and 30. 

A summary of these results from the Monte Carlo simulations for the varying 

correlation magnitudes and sample sizes are provided in Tables 8-30. The increasing 

reliability of the different model fit index tests was clearly indicated.  
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Table 8 

Monte Carlo Simulation Percentage of Model Fit Indices  
Indication of Poor Model Fit 
Correlation Matrix Magnitudes Range of 0.05 Plus or Minus 0.015 

Sample Size 50 100 150 200 300 500 

Chi-Squared 0% 0% 0% 0% 0% 0% 

RMSEA Lower 0% 0% 0% 0% 0% 0% 

RMSEA Upper 0% N/A N/A N/A N/A N/A 

SRMR 0% 0% 0% 0% 0% 0% 

CFI 0% 0% 0% 0% N/A N/A 
 
 
Table 9 
 
Monte Carlo Simulation Percentage of Model Fit Indices  
Indication of Poor Model Fit  
Correlation Matrix Magnitudes Range of 0.06 Plus or Minus 0.015 

Sample Size 50 100 150 200 300 500 

Chi-Squared 0% 0% 0% 0% 0% N/A 

RMSEA Lower 0% 0% 0% 0% 0% 0% 

RMSEA Upper 35% N/A N/A N/A N/A N/A 

SRMR 0% 0% 0% 0% 0% 0% 

CFI 0% 0% 0% N/A N/A N/A 
 
 
Table 10 
 
Monte Carlo Simulation Percentage of Model Fit Indices  
Indication of Poor Model Fit 
Correlation Matrix Magnitudes Range of 0.07 Plus or Minus 0.015 

Sample Size 50 100 150 200 300 500 

Chi-Squared 0% 0% 0% 0% 0% N/A 

RMSEA Lower 0% 0% 0% 0% 0% 0% 

RMSEA Upper 92% N/A N/A N/A N/A N/A 

SRMR 0% 0% 0% 0% 0% 0% 

CFI 0% 0% 0% N/A N/A N/A 
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Table 11 
 
Monte Carlo Simulation Percentage of Model Fit Indices  
Indication of Poor Model Fit 
Correlation Matrix Magnitudes Range of 0.08 Plus or Minus 0.015 

Sample Size 50 100 150 200 300 500 

Chi-Squared 0% 0% 0% 0% N/A N/A 

RMSEA Lower 0% 0% 0% 0% 0% 0% 

RMSEA Upper 100% 100% 100% 100% 100% 100% 

SRMR 0% 0% 0% 0% 0% 0% 

CFI 0% 0% N/A N/A N/A N/A 
 
 
Table 12 
 
Monte Carlo Simulation Percentage of Model Fit Indices  
Indication of Poor Model Fit 
Correlation Matrix Magnitudes Range of 0.09 Plus or Minus 0.015 

Sample Size 50 100 150 200 300 500 

Chi-Squared 0% 0% 0% 0% N/A N/A 

RMSEA Lower 0% 0% 0% 0% 0% 0% 

RMSEA Upper 100% 100% 100% 100% 100% 100% 

SRMR 0% 0% 0% 0% 0% 0% 

CFI 0% 0% N/A N/A N/A N/A 
 
 
Table 13 
 
Monte Carlo Simulation Percentage of Model Fit Indices  
Indication of Poor Model Fit 
Correlation Matrix Magnitudes Range of 0.10 Plus or Minus 0.015 

Sample Size 50 100 150 200 300 500 

Chi-Squared 0% 0% 0% 0% N/A N/A 

RMSEA Lower 0% 0% 0% 0% 0% N/A 

RMSEA Upper 100% 100% 100% 100% 100% 100% 

SRMR 0% 0% 0% 0% 0% 0% 

CFI 0% N/A N/A N/A N/A N/A 
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Table 14 
 
Monte Carlo Simulation Percentage of Model Fit Indices  
Indication of Poor Model Fit 
Correlation Matrix Magnitudes Range of 0.11 Plus or Minus 0.015 

Sample Size 50 100 150 200 300 500 

Chi-Squared 0% 0% 0% N/A N/A N/A 

RMSEA Lower 0% 0% 0% 0% 0% N/A 

RMSEA Upper 100% 100% 100% 100% 100% 100% 

SRMR 0% 0% 0% 0% 0% 0% 

CFI 0% N/A N/A N/A N/A N/A 
 
 
Table 15 
 
Monte Carlo Simulation Percentage of Model Fit Indices  
Indication of Poor Model Fit  
Correlation Matrix Magnitudes Range of 0.12 Plus or Minus 0.015 

Sample Size 50 100 150 200 300 500 

Chi-Squared 0% 0% N/A N/A N/A N/A 

RMSEA Lower 0% 0% 0% 0% N/A N/A 

RMSEA Upper 100% 100% 100% 100% 100% 100% 

SRMR 0% 0% 0% 0% 0% 0% 

CFI 0% N/A N/A N/A N/A N/A 
 
 
Table 16 
 
Monte Carlo Simulation Percentage of Model Fit Indices  
Indication of Poor Model Fit 
Correlation Matrix Magnitudes Range of 0.13 Plus or Minus 0.015 

Sample Size 50 100 150 200 300 500 

Chi-Squared 0% 0% N/A N/A N/A N/A 

RMSEA Lower 0% 0% 0% 0% N/A N/A 

RMSEA Upper 100% 100% 100% 100% 100% 100% 

SRMR 0% 0% 0% 0% 0% 0% 

CFI 0% N/A N/A N/A N/A N/A 
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Table 17 
 
Monte Carlo Simulation Percentage of Model Fit Indices  
Indication of Poor Model Fit 
Correlation Matrix Magnitudes Range of 0.14 Plus or Minus 0.015 

Sample Size 50 100 150 200 300 500 

Chi-Squared 0% 0% N/A N/A N/A N/A 

RMSEA Lower 0% 0% 0% N/A N/A N/A 

RMSEA Upper 100% 100% 100% 100% 100% 100% 

SRMR 0% 0% 0% 0% 0% 0% 

CFI 9% N/A N/A N/A N/A N/A 
 
 
Table 18 
 
Monte Carlo Simulation Percentage of Model Fit Indices  
Indication of Poor Model Fit 
Correlation Matrix Magnitudes Range of 0.15 Plus or Minus 0.015 

Sample Size 50 100 150 200 300 500 

Chi-Squared 0% N/A N/A N/A N/A N/A 

RMSEA Lower 0% 0% 0% N/A N/A N/A 

RMSEA Upper 100% 100% 100% 100% 100% 100% 

SRMR 2% N/A N/A N/A N/A N/A 

CFI 75% N/A N/A N/A N/A N/A 
 
 
Table 19 
 
Monte Carlo Simulation Percentage of Model Fit Indices  
Indication of Poor Model Fit 
Correlation Matrix Magnitudes Range of 0.16 Plus or Minus 0.015 

Sample Size 50 100 150 200 300 500 

Chi-Squared 0% N/A N/A N/A N/A N/A 

RMSEA Lower 0% 0% N/A N/A N/A N/A 

RMSEA Upper 100% 100% 100% 100% 100% 100% 

SRMR 54% N/A N/A N/A N/A N/A 

CFI 100% 100% 100% 100% 100% 100% 
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Table 20 
 
Monte Carlo Simulation Percentage of Model Fit Indices  
Indication of Poor Model Fit 
Correlation Matrix Magnitudes Range of 0.17 Plus or Minus 0.015 

Sample Size 50 100 150 200 300 500 

Chi-Squared 0% N/A N/A N/A N/A N/A 

RMSEA Lower 0% 0% N/A N/A NA N/A 

RMSEA Upper 100% 100% 100% 100% 100% 100% 

SRMR 99% 100% 100% 100% 100% 100% 

CFI 100% 100% 100% 100% 100% 100% 
 
 
Table 21 
 
Monte Carlo Simulation Percentage of Model Fit Indices  
Indication of Poor Model Fit  
Correlation Matrix Magnitudes Range of 0.18 Plus or Minus 0.015 

Sample Size 50 100 150 200 300 500 

Chi-Squared 0% N/A N/A N/A N/A N/A 

RMSEA Lower 0% N/A N/A N/A N/A N/A 

RMSEA Upper 100% 100% 100% 100% 100% 100% 

SRMR 100% 100% 100% 100% 100% 100% 

CFI 100% 100% 100% 100% 100% 100% 
 
 
Table 22 
 
Monte Carlo Simulation Percentage of Model Fit Indices  
Indication of Poor Model Fit  
Correlation Matrix Magnitudes Range of 0.19 Plus or Minus 0.015 

Sample Size 50 100 150 200 300 500 

Chi-Squared 0% N/A N/A N/A N/A N/A 

RMSEA Lower 0% N/A N/A N/A N/A N/A 

RMSEA Upper 100% 100% 100% 100% 100% 100% 

SRMR 100% 100% 100% 100% 100% 100% 

CFI 100% 100% 100% 100% 100% 100% 
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Table 23 
 
Monte Carlo Simulation Percentage of Model Fit Indices  
Indication of Poor Model Fit 
Correlation Matrix Magnitudes Range of 0.20 Plus or Minus 0.015 

Sample Size 50 100 150 200 300 500 

Chi-Squared 0% N/A N/A N/A N/A N/A 

RMSEA Lower 0% N/A N/A N/A N/A N/A 

RMSEA Upper 100% 100% 100% 100% 100% 100% 

SRMR 100% 100% 100% 100% 100% 100% 

CFI 100% 100% 100% 100% 100% 100% 
 
 
Table 24 
 
Monte Carlo Simulation Percentage of Model Fit Indices  
Indication of Poor Model Fit 
Correlation Matrix Magnitudes Range of 0.21 Plus or Minus 0.015 

Sample Size 50 100 150 200 300 500 

Chi-Squared 0% N/A N/A N/A N/A N/A 

RMSEA Lower 0% N/A N/A N/A N/A N/A 

RMSEA Upper 100% 100% 100% 100% 100% 100% 

SRMR 100% 100% 100% 100% 100% 100% 

CFI 100% 100% 100% 100% 100% 100% 
 
 
Table 25 
 
Monte Carlo Simulation Percentage of Model Fit Indices  
Indication of Poor Model Fit 
Correlation Matrix Magnitudes Range of 0.22 Plus or Minus 0.015 

Sample Size 50 100 150 200 300 500 

Chi-Squared 4% N/A N/A N/A N/A N/A 

RMSEA Lower 0% N/A N/A N/A N/A N/A 

RMSEA Upper 100% 100% 100% 100% 100% 100% 

SRMR 100% 100% 100% 100% 100% 100% 

CFI 100% 100% 100% 100% 100% 100% 
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Table 26 
 
Monte Carlo Simulation Percentage of Model Fit Indices  
Indication of Poor Model Fit  
Correlation Matrix Magnitudes Range of 0.23 Plus or Minus 0.015 

Sample Size 50 100 150 200 300 500 

Chi-Squared 86% N/A N/A N/A N/A N/A 

RMSEA Lower 0% N/A N/A N/A N/A N/A 

RMSEA Upper 100% 100% 100% 100% 100% 100% 

SRMR 100% 100% 100% 100% 100% 100% 

CFI 100% 100% 100% 100% 100% 100% 
 
 
Table 27 
 
Monte Carlo Simulation Percentage of Model Fit Indices  
Indication of Poor Model Fit 
Correlation Matrix Magnitudes Range of 0.24 Plus or Minus 0.015 

Sample Size 50 100 150 200 300 500 

Chi-Squared 100% 100% 100% 100% 100% 100% 

RMSEA Lower 0% N/A N/A N/A N/A N/A 

RMSEA Upper 100% 100% 100% 100% 100% 100% 

SRMR 100% 100% 100% 100% 100% 100% 

CFI 100% 100% 100% 100% 100% 100% 
 
 
Table 28 
 
Monte Carlo Simulation Percentage of Model Fit Indices  
Indication of Poor Model Fit 
Correlation Matrix Magnitudes Range of 0.25 Plus or Minus 0.015 

Sample Size 50 100 150 200 300 500 

Chi-Squared 100% 100% 100% 100% 100% 100% 

RMSEA Lower 24% N/A N/A N/A N/A N/A 

RMSEA Upper 100% 100% 100% 100% 100% 100% 

SRMR 100% 100% 100% 100% 100% 100% 

CFI 100% 100% 100% 100% 100% 100% 
 
  



50	
	

	
	

Table 29 
 
Monte Carlo Simulation Percentage of Model Fit Indices  
Indication of Poor Model Fit 
Correlation Matrix Magnitudes Range of 0.26 Plus or Minus 0.015 

Sample Size 50 100 150 200 300 500 

Chi-Squared 100% 100% 100% 100% 100% 100% 

RMSEA Lower 11% N/A N/A N/A N/A N/A 

RMSEA Upper 100% 100% 100% 100% 100% 100% 

SRMR 100% 100% 100% 100% 100% 100% 

CFI 100% 100% 100% 100% 100% 100% 
 
 
Table 30 
 
Monte Carlo Simulation Percentage of Model Fit Indices  
Indication of Poor Model Fit 
Correlation Matrix Magnitudes Range of 0.27 Plus or Minus 0.015 

Sample Size 50 100 150 200 300 500 

Chi-Squared 100% 100% 100% 100% 100% 100% 

RMSEA Lower 100% 100% 100% 100% 100% 100% 

RMSEA Upper 100% 100% 100% 100% 100% 100% 

SRMR 100% 100% 100% 100% 100% 100% 

CFI 100% 100% 100% 100% 100% 100% 
 

Each model fit index resulted in legitimate results at different correlation 

magnitudes, as indicated in Tables 7 through 30 above. The best model fit index, 

which resulted in legitimate model fit estimation at the lowest correlation magnitude, 

was RMSEA Upper at a correlation of 0.08 for all sample sizes. The next best model 

fit index was CFI, with valid estimation of model fit at a minimum correlation value of 

0.16. The next best model fit index following CFI was SRMR, with valid model fit 

estimation at a minimum correlation value of 0.17 for large sample sizes and 0.18 for 

sample size of 50. The next best model fit index following SRMR was Chi-Squared, 
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with valid model fit estimation at a minimum correlation value of 0.24. The model fit 

index that performed the poorest was RMSEA Lower, with valid model fit estimation 

at a minimum correlation of 0.27. These results are presented in greater detail in 

Table 31 below. 

 
Table 31 
 
Minimum Correlation Values for Valid Model Fit Index Measurement 
 Sample Size 

Model Fit Index 50 100 150 200 300 500 

Chi-Squared 0.24 0.24 0.24 0.24 0.24 0.24 

RMSEA Lower 0.27 0.27 0.27 0.27 0.27 0.27 

RMSEA Upper 0.08 0.08 0.08 0.08 0.08 0.08 

SRMR 0.18 0.17 0.17 0.17 0.17 0.17 

CFI 0.16 0.16 0.16 0.16 0.16 0.16 
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CHAPTER 5 CONCLUSIONS 

The purpose of this study was to evaluate the sensitivity of selected fit index 

statistics in determining model fit when the distribution varied from normality, as is 

typically true of data research for the physical sciences. SEM is a popular statistical 

method and is used in many physical and social behavioral science research 

projects; however, the sensitivity of the model fit indices when normality is violated 

had never been estimated. Estimation of the model fit is the first and an essential part 

of estimating the SEM, it was therefore imperative to study the effects when normality 

was violated. 

The equations for calculating the model fit indices were apparently 

nonparametric. It was hypothesized that using appropriate baseline or expected 

model distributions, the model fit index equations could be used to assess model fit 

for any distribution. It was expected that these equations would be robust in 

calculating model fit. 

The original intent for performing the research was to analyze the legitimacy of 

the model fit indices’ results against three different types of distributions. These 

distribution types were (1) mathematical distributions, (2) theoretical physical science 

distributions, and (3) applied physical science data sets. These data sets were 

sufficiently large to serve as proxies for typical physical science distributions and 

were meant to be analyzed using the specified model fit index tests (Chi-Squared, 

RMSEA Upper, RMSEA Lower, SRMR, and CFI).  

Due to unintended results, the research findings from the third data set 

(applied physical science data set) were presented first. This data set contained five 
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variables (Torque at Transmission, Engine Speed, Vehicle Speed, Accelerator Pedal 

Position, and Fuel Used). The variables were tested for normality using RStudio. The 

distributions for three of the five variables were non-normal, with nominal alpha set to 

0.05. Only Torque at Transmission and Accelerator Pedal Position were not 

statistically significantly different from a normal distribution. Hence, typical physical 

science data sets could have both normal and non-normal variables within the same 

analysis. 

The variables were assessed using an SEM, and a Monte Carlo simulation of 

10,000 iterations for varying sample sizes of n = 10, 20, 30, 50, and 250. It was 

determined that an indication of poor model fit occurred with greater consistency as 

the sample size of the data set increased. Indication of a poor model fit approximately 

100% of the time for sample size of 250 and 88% of the time for sample size of 20 

resulted when examining the trends for model fit index RMSEA Lower. Indication of a 

poor model fit approximately 91% of the time for sample size of 250 and 

approximately 84% of the time for sample size of 20 resulted when examining model 

fit index results for CFI. Indication of a poor model fit approximately 100% of the time 

resulted when examining the results for the other model fit indices (i.e., Chi-Squared, 

RMSEA Upper, SRMR). 

It was also determined that the magnitude of the correlation decreased as 

sample size decreased; from r = 0.46 for a sample size of n = 250 to r = 0.39 for a 

sample size of n = 20. As the correlation approached zero (e.g., sample size of n = 

10), the model fit from the Monte Carlo simulation resulted in illogical values. 
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The first indication of illegitimate results was the fractional value of 0.34 for the 

mean degree of freedom for the 10,000 repetition Monte Carlo simulation (Table 32). 

This value should be a whole number, and should be consistent for the same SEM. 

Although not the focus of this study, the fractional values indicated varying degree of 

freedom with each repetition of the same experiment. 

The second indication of illegitimate results was the value indicating the 

percentage of time that the model fit indices were an indication of a poor model fit. 

The percentage of time the RMSEA Lower tests were greater than 0.05 was 10% and 

the percentage of time the RMSEA Lower tests were less than or equal to 0.05 was 

2% (Table 32). These two values should add to 100%, not 12%. This illogical result 

only occurred for the Monte Carlo simulation for sample size n = 10. The larger 

sample size Monte Carlo simulations resulted in values that added to 100% (e.g., 

when sample size equaled to 250 as indicated in Table 32; the same applies to 

remaining Figures B2 – B6 in Appendix B). 

The illogical results occurred again when a fifth variable was added to the 

SEM. Lavaan could not compute the degrees of freedom for this simulation, and the 

percentage of time model fit indices were less than or greater than a critical value did 

not sum to 100% (Table 32).  
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Table 32 
 
Lavaan Output for Several Monte Carlo Simulations, Repetitions = 10,000 
Variables 4 4 5 

Sample Size 250 10 250 

Degree of Freedom 3 0.3432 N/A 

% Time RMSEA Lower <= 0.05 0% 19% 0% 

% Time RMSEA Lower > 0.05 100% 10% 3% 

% Time RMSEA Upper <= 0.1 0% 0% 0% 

% Time RMSEA Upper > 0.1 100% 11% 3% 

% Time SRMR <= 0.09 0% 0% 0% 

% Time SRMR > 0.09 100% 11% 3% 
 

These unexpected illogical results led to checking the Monte Carlo simulation 

command file for programming errors. The Monte Carlo command file was executed 

in RStudio, with one repetition of the SEM and a manufactured correlation matrix with 

six variables. The same correlation matrix was then used in IBM’s SPSS Amos 

Graphics (version 22) with the same variables and the same SEM layout. The results 

from Amos Graphics were within rounding error of the Monte Carlo simulation in 

RStudio (Table 33 and Figures 16 and 17). 

Table 33 
 
Manufactured Correlation Matrix for Checking Lavaan Monte Carlo Programming File 
type varname X1 X2 X3 X4 X5 X6 
n  450 450 450 450 450 450 
corr X1 1      
corr X2 0.084 1     
corr X3 -0.072 -0.093 1    
corr X4 0.050 -0.006 -0.010 1   
corr X5 0.076 0.014 -0.039 -0.060 1  
corr X6 -0.028 -0.069 -0.047 -0.097 0.023 1 
stddev 1 1 1 1 1 1 1 
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lavaan (0.5-19) converged normally after  10 iterations 
  Number of observations                            450 
  Estimator                                           ML 
  Minimum Function Test Statistic                 7.008 
  Degrees of freedom                                  4 
  P-value (Chi-square)                             0.135 
 
User model versus baseline model: 
  Comparative Fit Index (CFI)                     0.641 
  RMSEA                                            0.041 
  90 Percent Confidence Interval            0.000  0.090 
  P-value RMSEA <= 0.05                           0.549 
  SRMR                                             0.027 
 
Regressions: 
                     Estimate   Std.Err   Z-value   P(>|z|) 
  X6 ~                                            
    X1               -0.028     0.047    -0.604     0.546 
    X4               -0.095     0.047    -2.019     0.044 
    X3               -0.049     0.047    -1.054     0.292 
    X5          0.018     0.047     0.382     0.703 
  X5 ~                                            
    X4               -0.060     0.047    -1.275     0.202 
    X3               -0.039     0.047    -0.826     0.409 
    X2               0.010     0.047     0.208     0.835 
  X3 ~                                                
    X2               -0.093     0.047    -1.982     0.047 
  X4 ~                                                
    X1                0.050     0.047     1.059     0.289 
    X3               -0.006     0.047    -0.138     0.890 
  X1 ~                                                
    X2               0.084     0.047     1.782     0.075 
 
Variances: 
                    Estimate   Std.Err   Z-value   P(>|z|) 
    X6            0.985     0.066    15.000     0.000 
    X5            0.993     0.066    15.000     0.000 
    X3             0.989     0.066    15.000     0.000 
    X4             0.995     0.066    15.000     0.000 
    X1             0.991     0.066    15.000     0.000 
 
Figure 16. Lavaan Output for Sample Size of 450 and Six Variables. 

 

  



57	
	

	
	

Regression Weights: (Group number 1 - Default model) 
Estimate S.E. C.R. P Label 

X3 <--- X2 -.093 .047 -1.980 .048 par_2 

X1 <--- X2 .084 .047 1.780 .075 par_3 

X4 <--- X1 .050 .047 1.058 .290 par_4 

X4 <--- X3 -.006 .047 -.138 .890 par_10 

X5 <--- X2 .010 .047 .208 .835 par_1 

X5 <--- X3 -.039 .047 -.825 .409 par_8 

X5 <--- X4 -.060 .047 -1.273 .203 par_9 

X6 <--- X1 -.028 .047 -.603 .546 par_5 

X6 <--- X4 -.095 .047 -2.016 .044 par_6 

X6 <--- X3 -.049 .047 -1.052 .293 par_7 

X6 <--- X5 .018 .047 .381 .703 par_11 

Variances: (Group number 1 - Default model) 
Estimate S.E. C.R. P Label 

X2 .998 .067 14.983 *** par_12 

d1 .989 .066 14.983 *** par_13 

g1 .991 .066 14.983 *** par_14 
a1 .995 .066 14.983 *** par_15 

e1 .993 .066 14.983 *** par_16 

c1 .985 .066 14.983 *** par_17 

Model Fit Summary 
Chi-Squared 
Model NPAR Chi-Squared DF P CMIN/DF 

Default model 17 6.992 4 .136 1.748 

Baseline Comparisons 
Model NFI Delta1 RFI rho1 IFI Delta2 TLI rho2 CFI 

Default model .700 -.124 .845 -.348 .640 

RMSEA 
Model RMSEA LO 90 HI 90 PCLOSE 

Default model .041 .000 .090 .549 

Independence model .035 .000 .062 .801 
 
Figure 17. Amos Output for Sample Size of 450 and Six Variables. 
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In an effort to simplify the SEM to better understand the source of the issues, a 

Monte Carlo simulation with 10,000 repetitions of varying correlation matrices of 

randomly selected numbers between -0.1 and +0.1 was executed in RStudio. The 

model fit results of the Monte Carlo simulation were still illogical, similar to the illogical 

results for the four variable analysis with sample size n = 10 and for the five variable 

analyses. The output of the latest repetition of the Monte Carlo simulation was 

extracted and compared with the output from Amos Graphics. They were the same 

within rounding error.  

Fit index results should be consistent, regardless of whether a meaningful 

model is produced. Examination of the model fit indices results should indicate a 

good or a poor model fit when a reasonable model is assessed. However, 

examination of the results should never indicate a good model fit on a poorly defined 

model. In this case, the correlation values between variables were small and the 

paths were not significant. Therefore the model, having no relationships, should 

result in an indication of poor model fit when assessed using model fit index tests. 

This indication of poor model fit should occur uniformly for all model fit index tests 

and for all sample sizes.  
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These findings were discussed with statistical experts. The first subject matter 

expert believed there were some insights that could be garnered based on the results 

(B. Zumbo, personal communication, November, 2015). The second subject matter 

expert confirmed the Lavaan Monte Carlo command file by executing the model in 

Mplus (Figure 18) using the manufactured correlation matrix (Table 33), and noted: 

[T]his model shows mixed results in terms of fit, but the 
paths are not significant and the amount of explained 
variance is not significant – so you have a well-fitting 
model that explains zero variance. So in essence, the 
structural relations specified in the model were able to 
accurately reproduce a covariance matrix with no 
significant covariances. To say one needs to approach 
that with caution is a considerable understatement.  
(R. Partridge, personal communications, November, 
2015). 

 

As a beginning to approaching the model fit indices assessment with caution, 

additional research was conducted to determine what SEM conditions caused the 

model fit index results to be illogical. The Monte Carlo simulation models were 

assessed to find common characteristics. A consistent attribute between the five 

variable analysis and the four variable analysis for sample size n = 10 was the low 

correlation values between the variables. It appeared when the correlation values 

between variables were low the results of the model fit indices were illogical. 

Additional research was therefore conducted to determine what constituted a low 

correlation, and whether there was a minimum allowable correlation value between 

variables that is a prerequisite for a SEM to be meaningful. 
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Mplus VERSION 5.1 
Number of continuous latent variables 0 Number of observations     450 
Number of dependent variables      4 Number independent variables 2 
 
TESTS OF MODEL FIT 
Chi-Square Test of Model Fit 
          Value                          7.749 
          Degrees of Freedom       5 
          P-Value                       0.1706 
 
SRMR Value                          0.025 
          CFI                        0.537 
 
RMSEA (Root Mean Square Error Of Approximation) 
          Estimate                      0.035 
          90 Percent C.I.               0.000  0.080 
          Probability RMSEA <= .05     0.649 
 
MODEL RESULTS (Two-Tailed) 
                      Estimate     S.E.    Est./S.E.  P-Value 
 X4 ON X1           0.054       0.047       1.145       0.252 
 X3 ON X2          -0.093       0.047      -1.986  0.047 
 X5 ON 
    X2                 .010       0.047       0.216   0.829 
    X3                -0.037       0.047      -0.778   0.437 
 X6  ON 
    X1                -0.030   0.047   -0.631  0.528 
 X1 WITH X2      0.083    0.047   1.754   0.079 
 X6  WITH 
    X4      -0.095   0.047   -2.015   0.044 
    X5         0.024     0.047    0.513   0.608 
 X5 WITH X4      -0.063   0.047   -1.341   0.180 
 X3 WITH X4     -0.012   0.047   -0.265   0.791 
 
Variances 
    X1          0.998   0.067  15.000  0.000 
    X2        0.998  0.067  15.000 0.000 
    X3     0.989   0.066   15.000   0.000 
    X4     0.995   0.066   15.000  0.000 
    X5       0.996   0.066  15.000  0.000 
    X6      0.997   0.066  15.000  0.000 
 
Figure 18. Mplus Output for Sample Size of 450 and Six Variables. 
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Additional Monte Carlo simulations were conducted, with 1,000 repetitions and 

varying magnitudes of correlation matrices. The magnitudes of the correlation values 

for the correlation matrix were randomly selected from a base value plus or minus 

0.015. Twenty four Monte Carlo simulations were performed, with the base value 

increasing from 0.04 to 0.27 and a Monte Carlo simulation performed at every 

hundredths place value (i.e. 0.04, 0.05 ,0.06, etc.). An indication of the legitimacy of 

the model fit indices would be an indication of poor model fit, because the input 

correlation values for the four variables had no relationship and were randomly 

selected.  

As the correlation matrix values were increased in magnitude, the results of 

the model fit indices became first illogical and then finally logical with an increasing 

indication of a poor model fit. At a certain correlation magnitude (e.g. when 

correlation was equal to 0.08 plus or minus 0.015 as in Table 34), the results of the 

model fit indices were an indication of a poor model fit for the model fit index studied 

for all Monte Carlo repetitions.  

Each model fit index resulted in legitimate results at different correlation 

magnitudes. Model fit indices can be ranked from best to worst based on the 

minimum correlation values required before legitimate results were acquired. The 

model fit indices, from best to worst, are listed in Table 35 below with their respective 

minimum correlation values and ranks. 
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Table 34 
 
Monte Carlo Simulation Percentage of Model Fit Indices  
Indication of Poor Model Fit 

   

Correlation Matrix Magnitudes Range Plus or Minus 0.015 
Sample Size 50 100 150 200 300 500 
Correlation 0.04 0.04 0.04 0.04 0.04 0.04 
Chi-Squared 0% 0% 0% 0% 0% 0% 
RMSEA Lower 0% 0% 0% 0% 0% 0% 
RMSEA Upper 0% 0% 0% 0% 0% 0% 
SRMR 0% 0% 0% 0% 0% 0% 
CFI 0% 0% 0% 0% 0% 0% 
Correlation 0.06 0.06 0.06 0.06 0.06 0.06 
Chi-Squared 0% 0% 0% 0% 0% N/A 
RMSEA Lower 0% 0% 0% 0% 0% 0% 
RMSEA Upper 35% N/A N/A N/A N/A N/A 
SRMR 0% 0% 0% 0% 0% 0% 
CFI 0% 0% 0% N/A N/A N/A 
Correlation 0.08 0.08 0.08 0.08 0.08 0.08 
Chi-Squared 0% 0% 0% 0% N/A N/A 
RMSEA Lower 0% 0% 0% 0% 0% 0% 
RMSEA Upper 100% 100% 100% 100% 100% 100% 
SRMR 0% 0% 0% 0% 0% 0% 
CFI 0% 0% N/A N/A N/A N/A 
Correlation 0.16 0.16 0.16 0.16 0.16 0.16 
Chi-Squared 0% N/A N/A N/A N/A N/A 
RMSEA Lower 0% 0% N/A N/A N/A N/A 
SRMR 54% N/A N/A N/A N/A N/A 
CFI 100% 100% 100% 100% 100% 100% 
Correlation 0.18 0.18 0.18 0.18 0.18 0.18 
Chi-Squared 0% N/A N/A N/A N/A N/A 
RMSEA Lower 0% N/A N/A N/A N/A N/A 
SRMR 100% 100% 100% 100% 100% 100% 
Correlation 0.24 0.24 0.24 0.24 0.24 0.24 
Chi-Squared 100% 100% 100% 100% 100% 100% 
RMSEA Lower 0% N/A N/A N/A N/A N/A 
Correlation 0.27 0.27 0.27 0.27 0.27 0.27 
Chi-Squared 100% 100% 100% 100% 100% 100% 
RMSEA Lower 100% 100% 100% 100% 100% 100% 
RMSEA Upper 100% 100% 100% 100% 100% 100% 
SRMR 100% 100% 100% 100% 100% 100% 
CFI 100% 100% 100% 100% 100% 100% 
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Table 35 
 
Minimum Correlation Values 
Rank Model Fit Index Minimum Correlation Value 

1 RMSEA Upper 0.08 

2 CFI 0.16 

3 SRMR 0.18 

4 Chi-Squared 0.24 

5 RMSEA Lower 0.27 

 

The results from the last repetition of the Monte Carlo simulation with 

correlation range of 0.1 plus or minus 0.015 and sample size of 500 were extracted 

(refer to Table 36 and Figure 19 below) to better understand the results of the Monte 

Carlo simulations and to verify the conclusions determined above. The model fit was 

a mixture between good and poor, based on the results of the model fit index tests. 

The p value for the Chi-Squared test was 0.003, an indication of a poor model fit. The 

RMSEA Upper value was 0.133, an indication of a poor model fit. The RMSEA Lower 

value was 0.044, an indication of a good model fit. The CFI value was 0.505, an 

indication of a poor model fit. The SRMR value was 0.055, an indication of a good 

model fit. 
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  Number of observations                  500 
  Estimator                                    ML 
  Minimum Function Test Statistic       14.059 
  Degrees of freedom                3 
  P-value (Chi-square)                    0.003 
 
User model versus baseline model: 
  Comparative Fit Index (CFI)               0.505 
  Tucker-Lewis Index (TLI)                       0.010 
  Number of free parameters                  7 
  RMSEA                                              0.086 
rmsea.ci.lower                                        0.044  
rmsea.ci.upper                                       0.133  
  90 Percent Confidence Interval         0.044  0.133 
  P-value RMSEA <= 0.05                     0.075 
  SRMR                                             0.055 
 
Parameter estimates: 
  Information                             Expected 
  Standard Errors                         Standard 
 
Regressions: 
   Estimate Std.err Z-value P(>|z|) 
z ~ 
  x1 0.088  0.044   1.990   0.047 
  x2  0.079  0.044   1.786   0.074 
  x3 0.098 0.044   2.232   0.026 
 
Covariances: 
  x1 ~~x2      0.000 
    x3              0.000 
  x2 ~~x3     0.000 
 
Variances: 
    z          0.970   0.061 
    x1          0.998   0.063 
    x2           0.998   0.063 
    x3         0.998   0.063 
 
x1=Accelerator Pedal Position, x2=Engine Speed,  
x3=Vehicle Speed, and x4=Torque At Transmission 

 
Figure 19. Lavaan Output for Sample Size of 500 and Four Variables, 
Repetitions = 1,000. 
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Table 36 
 
Correlation Matrix 

Variables z X1 X2 X3 

z 1.000 0.104 0.098 0.115 

X1 0.104 1.000 0.100 0.088 

X2 0.098 0.100 1.000 0.109 

X3 0.115 0.088 0.109 1.000 
 
The regression coefficients for the exogenous variables were 0.088 for X1, 

0.079 for X2, and 0.098 for X3. Although these values were low, the coefficients for 

X1 and X3 were statistically significant. This is illogical, as the correlation magnitudes 

in the correlation matrix were all low. Statistically significant paths between variables 

are therefore a contradictory conclusion. These results solidified the conclusion 

above that a SEM with a correlation matrix of low values would result in illogical 

outcomes. 

The results from Tables 34 and 35 were forwarded to a third subject matter 

expert who opined:  

SEM is a collection of procedures that are assessed 
based on a plethora of fit or lack of fit statistics that could 
be subjectively chosen or ignored to support or eliminate a 
model. Moreover, dozens of caveats (such as those listed 
in Kline, 2011, e.g., at its core it relates to non-
experimental data and hence there can never be 
causation (p. 8), a poor model can be preserved by 
modifying the hypotheses on which it is based (p. 8), 
alternative models may not be ruled out (p. 8), it is a large 
sample technique (p. 11), it eschews hypothesis testing 
and hence is veiled behind subjectivity (p. 13), the 
statistical significance of estimated parameters are 
dependent on the algorithm adopted (p. 13), maximum 
likelihood estimate cannot tolerate even a single missing 
datum (p. 48), a nonpositive definite matrix cannot be 
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analyzed (p. 49), ill-scaled covariance matrices cannot be 
handled (p. 67)) severely limit SEM outside of textbook 
examples. (S. Sawilowsky, personal communications, 
November, 2015). 

 

This expert, in citing Kline (2011), also pointed to the most likely explanation 

for the study results: 

It may be problematic to submit for analysis just a 
correlation matrix without standard deviations or specify 
that all standard deviations are 1.0, which standardizes 
everything. This is because the default method of ML 
estimation (and most other methods, too) assumes that 
the variables are unstandardized. This means that if a 
correlation matrix without standard deviations is 
analyzed, the results may not be correct…Some SEM 
computer programs give warning message or terminate 
the run if the researcher requests the analysis of a 
correlation matrix only with standard ML estimation. By 
the same token, it would also be problematic to convert 
raw scores to z scores and then submit for analysis the 
data file of standardized scores.  (Kline, 2011, p. 49) 

 

The subject matter expert concluded that no systematic Monte Carlo study 

could be conducted by inputting an incrementally increasing correlation matrix, such 

as was attempted in this study (S. Sawilowsky, personal communications, November, 

2015). 

Recommendations for Future Research 

Illogical values for percentage of times the model fit indices results were above 

or below certain values occurred when correlation values in the correlation matrix 

table were low. For example, the results from RStudio for percentage of time the 

RMSEA Lower tests were greater than 0.05 was 10% and the percentage of time the 
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RMSEA Lower tests were less than or equal to 0.05 was 2% (refer to Table 32 

above). These two values should add to 100%, not to 12%. 

The reason for these illogical results could be due to several factors. One 

reason could be due to a programming error from Lavaan and the error could be 

unique for that program. Alternatively, the illogical results could be due to an error in 

the SEM theory itself. At any rate, further research is required to determine the 

source. 

An indication of illogical results, exhibited from the results of the Monte Carlo 

simulation for an SEM of four variables and sample size n = 10, was the fractional 

property of the mean degrees of freedom (for 10,000 repetitions) resulting in a value 

of 0.3432 (refer to Table 32 above). After this result occurred, the last of the 10,000 

repetitions was assessed and the degree of freedom for that repetition was three, a 

whole number. Therefore, the fraction value for the mean degrees of freedom is due 

to a variant degree of freedom for each repetition. This is illogical. The degrees of 

freedom are a function of the variables, correlations, errors, and paths. If the number 

of correlations, errors, variables, or paths do not change then the degree of freedom 

should be uniform. The varying degree of freedom is illogical. Further research is 

required to determine the cause of this illogical result and the necessary boundary 

conditions to prevent disturbance of the SEM results. 
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Implications for Future Research 

No systemic Monte Carlo study could be conducted by inputting an 

incrementally increasing correlation matrix, due to the many restrictions listed above. 

One possibility is to input a matrix of non-standardized values. This might be 

accomplished by incrementally increasing correlation values and using a covariance 

matrix of unstandardized values. 

According to Nunnally and Bernstein (1994), the relationship between 

correlation and covariance is: 

௫௬ߪ ൌ
∑ሺ௑ି௑തሻሺ௒ି௒തሻ

ே
ൌ

∑௫௬

ே
 Eq. (9) 

௫௬ݎ ൌ
ఙೣ೤
ఙೣఙ೤

 Eq. (10) 

௫௬ߪ ൌ  ௬ Eq. (11)ߪ௫ߪ௫௬ݎ

where N = number of observed variables, rxy = correlation of x and y, x = standard 

deviation of x, y = standard deviation of y, and xy = covariance of x and y. 

A Monte Carlo simulation study might be designed by using covariance 

matrices developed from varying correlation and standard deviations values. If set to 

specific parameters, a minimum allowable standard deviation value for each 

correlation value can be determined. The parameters required to produce results are 

unknown, but an initial recommendation would be to run a Monte Carlo simulation of 

1,000 repetitions; correlation values = 0.025, 0.05, 0.075, 0.1, etc.; sample size = 50, 

100, 150, 200, 300, and 500; and standard deviations for x and y of different patterns 

(Table 37 below).  
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Table 37 
 
Varying Standard Deviation Values* 
Pattern One Pattern Two Pattern Three Pattern Four Pattern Five Pattern Six 
SDx SDy SDx SDy SDx SDy SDx SDy SDx SDy SDx SDy 

1 1.5 1 15 1.5 1.5 15 15 1.5 768 15 7680
1 3 1 30 3 3 30 30 3 384 30 3840
1 6 1 60 6 6 60 60 6 192 60 1920
1 12 1 120 12 12 120 120 12 96 120 960 
1 24 1 240 24 24 240 240 24 48 240 480 
1 48 1 480 48 48 480 480 48 24 480 240 
1 96 1 960 96 96 960 960 96 12 960 120 
1 192 1 1920 192 192 1920 1920 192 6 1920 60 
1 384 1 3840 384 384 3840 3840 384 3 3840 30 
1 768 1 7680 768 768 7680 7680 768 1.5 7680 15 

 
* Additional patterns exist, and can be analyzed as appropriate. 

 

One analysis, for the six sample sizes indicated above and with one repetition, 

was performed. This analysis included the covariance values calculated using the 

SDx and SDy values indicated in Pattern One. The covariance matrix and results are 

summarized in Tables 38 and 39 below. The output from the Lavaan SEM is provided 

in Appendix C. 

 

Table 38 
 
Covariance Matrix 

Model Fit Index z X1 X2 X3 

z 4.8 

X1 0.6 1.2 

X2 38.4 0.3 76.8 

X3 2.4 19.2 0.15 9.6 
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Table 39 
 
Model Fit Indices for Correlation Value of 0.1 
Sample Size 50 100 150 200 300 500 

Chi-Squared P Value 0.0 0.0 0.0 0.0 0.0 0.0 

RMSEA Lower 0.0 0.0 0.0 0.0 0.0 0.0 

RMSEA Upper 0.0 0.0 0.0 0.0 0.0 0.0 

SRMR 1.9 1.9 1.9 1.9 1.9 1.9 

CFI 1.0 1.0 1.0 1.0 1.0 1.0 
Note: Bold text indication of poor model fit. 

 

The model fit results from analysis were mixed. The Chi-Squared and SRMR 

test results were an indication of a poor model fit. The RMSEA Lower, RMSEA Upper 

and CFI test results were an indication of a good model fit. The model fit index values 

did not vary significantly between sample sizes. 

As the covariance matrix was compiled using patterned values of random 

formulation, an indication of appropriate model fit test results would be a poor model 

fit. It would be interesting to see the results for smaller correlation values, such as 

0.025 and 0.05, to determine the lowest correlation values the model fit index results 

for the Chi-Squared and CFI tests resulted in a poor model fit. 
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APPENDIX A 

 
Table A1 
 
Upper Tail Probabilities of the Chi-Squared Distribution (Neave & Worthington, 1988) 

 
 5% 1%  5% 1% 
1 3.841 6.635 26 38.885 45.642
2 5.991 9.210 27 40.113 46.963
3 7.815 11.345 28 41.337 48.278
4 9.488 13.277 29 42.557 49.588
5 11.070 15.086 30 43.773 50.892
6 12.592 16.812 31 44.985 52.191
7 14.067 18.475 32 46.194 53.486
8 15.507 20.090 33 47.400 54.776
9 16.919 21.666 34 48.602 56.061
10 18.307 23.209 35 49.802 57.342
11 19.675 24.725 36 50.998 58.619
12 21.026 26.217 37 52.192 59.893
13 22.362 27.688 38 53.384 61.162
14 23.685 29.141 39 54.572 62.428
15 24.996 30.578 40 55.758 63.691
16 26.296 32.000 45 61.656 69.957
17 27.587 33.409 50 67.505 76.154
18 28.869 34.805 60 79.082 88.379
19 30.144 36.191 70 90.531 110.43
20 31.410 37.566 80 101.88 112.33
21 32.671 38.932 90 113.15 124.12
22 33.924 40.289 100 124.34 135.81
23 35.172 41.638 
24 36.415 42.980 
25 37.652 44.314 
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APPENDIX B 

 

sample size=250 
repetitions=10000 
mean correlation=0.463424754334544 
mean DOF=3 
chisq a<0.05=1-> This means that p-chi-squared was less than 0.05 5% of the time 
chisq a<0.01=1-> This means that p-chi-squared was less than 0.01 1% of the time 
RMSEA (lower)<=0.05=2e-04-> This means that RMSEA Lower is less than 0.05 0% 
of the time 
RMSEA (lower)>0.05=0.9998-> This means that RMSEA Lower is greater than 0.05 
100% of the time 
RMSEA (upper)<=0.1=0-> This means that RMSEA Upper is less than 0.1 0% of the 
time 
RMSEA (upper)>0.1=1-> This means that RMSEA Upper is greater than 0.1 100% of 
the time 
SRMR<=0.09=5e-04-> This means that SRMR is less than 0.09 0% of the time 
SRMR>0.09=0.9995-> This means that SRMR is greater than 0.09 100% of the time 
CFI<0.9=0.9068-> This means that CFI is less than 0.9 91% of the time 
CFI<0.75=0.4115-> This means that CFI is less than 0.75 41% of the time 
CFI<0.5=0.0295-> This means that CFI is less than 0.5 3% of the time 
 
Figure B1. Lavaan Output for Sample Size of 250 and Four Variables, 
Repetitions = 10,000. 
 

  



73	
	

	
	

sample size=100 
repetitions=10000 
mean correlation=0.433938716916882 
mean DOF=3 
chisq a<0.05=1-> This means that p-chi-squared was less than 0.05 100% of the 
time 
chisq a<0.01=1-> This means that p-chi-squared was less than 0.01 100% of the 
time 
RMSEA (lower)<=0.05=0.0108-> This means that RMSEA Lower is less than 0.05 
1% of the time 
RMSEA (lower)>0.05=0.9892-> This means that RMSEA Lower is greater than 0.05 
99% of the time 
RMSEA (upper)<=0.1=0-> This means that RMSEA Upper is less than 0.1 0% of the 
time 
RMSEA (upper)>0.1=1-> This means that RMSEA Upper is greater than 0.1 100% of 
the time 
SRMR<=0.09=0.0028-> This means that SRMR is less than 0.09 0% of the time 
SRMR>0.09=0.9972-> This means that SRMR is greater than 0.09 100% of the time 
CFI<0.9=0.8297-> This means that CFI is less than 0.9 83% of the time 
CFI<0.75=0.4133-> This means that CFI is less than 0.75 41% of the time 
CFI<0.5=0.1526-> This means that CFI is less than 0.5 15% of the time 
 
Figure B2. Lavaan Output for Sample Size of 100 and Four Variables, 
Repetitions = 10,000. 
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sample size=50 
repetitions=10000 
mean correlation=0.412394902961997 
mean DOF=3 
chisq a<0.05=1-> This means that p-chi-squared was less than 0.05 100% of the 
time 
chisq a<0.01=1-> This means that p-chi-squared was less than 0.01 100% of the 
time 
RMSEA (lower)<=0.05=0.0539-> This means that RMSEA Lower is less than 0.05 
5% of the time 
RMSEA (lower)>0.05=0.9461-> This means that RMSEA Lower is greater than 0.05 
10% of the time 
RMSEA (upper)<=0.1=3e-04-> This means that RMSEA Upper is less than 0.1 0% of 
the time 
RMSEA (upper)>0.1=0.9997-> This means that RMSEA Upper is greater than 0.1 
100% of the time 
SRMR<=0.09=0.0055-> This means that SRMR is less than 0.09 1% of the time 
SRMR>0.09=0.9945-> This means that SRMR is greater than 0.09 99% of the time 
CFI<0.9=0.8058-> This means that CFI is less than 0.9 81% of the time 
CFI<0.75=0.4441-> This means that CFI is less than 0.75 44% of the time 
CFI<0.5=0.2316-> This means that CFI is less than 0.5 23% of the time 
 
Figure B3. Lavaan Output for Sample Size of 50 and Four Variables, Repetitions 
= 10,000. 
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sample size=30 
repetitions=10000 
mean correlation=0.397398624898292 
mean DOF=3 
chisq a<0.05=1-> This means that p-chi-squared was less than 0.05 100% of the 
time 
chisq a<0.01=1-> This means that p-chi-squared was less than 0.01 100% of the 
time 
RMSEA (lower)<=0.05=0.0913-> This means that RMSEA Lower is less than 0.05 
9% of the time 
RMSEA (lower)>0.05=0.9087-> This means that RMSEA Lower is greater than 0.05 
91% of the time 
RMSEA (upper)<=0.1=0.0012-> This means that RMSEA Upper is less than 0.1 0% 
of the time 
RMSEA (upper)>0.1=0.9988-> This means that RMSEA Upper is greater than 0.1 
100% of the time 
SRMR<=0.09=0.0053-> This means that SRMR is less than 0.09 1% of the time 
SRMR>0.09=0.9947-> This means that SRMR is greater than 0.09 99% of the time 
CFI<0.9=0.8252-> This means that CFI is less than 0.9 83% of the time 
CFI<0.75=0.5033-> This means that CFI is less than 0.75 50% of the time 
CFI<0.5=0.2795-> This means that CFI is less than 0.5 30% of the time 
 
Figure B4. Lavaan Output for Sample Size of 30 and Four Variables, Repetitions 
= 10,000. 
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sample size=20 
repetitions=10000 
mean correlation=0.386482079166151 
mean DOF=3 
chisq a<0.05=1-> This means that p-chi-squared was less than 0.05 100% of the 
time 
chisq a<0.01=1-> This means that p-chi-squared was less than 0.01 100% of the 
time 
RMSEA (lower)<=0.05=0.1224-> This means that RMSEA Lower is less than 0.05 
12% of the time 
RMSEA (lower)>0.05=0.8776-> This means that RMSEA Lower is greater than 0.05 
88% of the time 
RMSEA (upper)<=0.1=0.0011-> This means that RMSEA Upper is less than 0.1 0% 
of the time 
RMSEA (upper)>0.1=0.9989-> This means that RMSEA Upper is greater than 0.1 
100% of the time 
SRMR<=0.09=0.0044-> This means that SRMR is less than 0.09 0% of the time 
SRMR>0.09=0.9956-> This means that SRMR is greater than 0.09 100% of the time 
CFI<0.9=0.8387-> This means that CFI is less than 0.9 84% of the time 
CFI<0.75=0.5637-> This means that CFI is less than 0.75 56% of the time 
CFI<0.5=0.311-> This means that CFI is less than 0.5 31% of the time 
 
Figure B5. Lavaan Output for Sample Size of 20 and Four Variables, Repetitions 
= 10,000. 
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sample size=10 
repetitions=10000 
mean correlation=0.0421997270262573 
mean DOF*=0.3432 
chisq a**<0.05=0.1144-> This means that p-chi-squared was less than 0.05 11% of 
the time 
chisq a**<0.01=0.1143-> This means that p-chi-squared was less than 0.01 11% of 
the time 
RMSEA (lower)**<=0.05=0.0186-> This means that RMSEA Lower is less than 0.05 
2% of the time 
RMSEA (lower)**>0.05=0.0958-> This means that RMSEA Lower is greater than 
0.05 10% of the time 
RMSEA (upper)**<=0.1=0-> This means that RMSEA Upper is less than 0.1 0% of 
the time 
RMSEA (upper)**>0.1=0.1144-> This means that RMSEA Upper is greater than 0.1 
11% of the time 
SRMR**<=0.09=0-> This means that SRMR is less than 0.09 0% of the time 
SRMR**>0.09=0.1144-> This means that SRMR is greater than 0.09 11% of the time 
CFI**<0.9=0.0994-> This means that CFI is less than 0.9 10% of the time 
CFI**<0.75=0.0766-> This means that CFI is less than 0.75 8% of the time 
CFI**<0.5=0.0413-> This means that CFI is less than 0.5 4% of the time 
 
 

*Mean degrees of freedom did not result in a whole number.  

**Results indicated that RMSEA Lower was less than 0.05 eleven percent of the time 
and greater than 0.05 for ten percent of the repetitions. These values do not add up  
to 100%. 
 

 
Figure B6. Lavaan Output for Sample Size of 10 and Four Variables, Repetitions 
= 10,000. 
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sample size=450 
repetitions=10000 
mean correlation x1&z=0.000462070478175039 
mean correlation x2&z=0.0025020921013811 
mean correlation x3&z=0.00227332378855168 
mean correlation x4&z=0.000598797833551206 
mean DOF= numeric(0)* 
chisq a**<0.05=0.0325-> This means that p-chi-squared was less than 0.05 3% of 
the time 
chisq a**<0.01=0.0325-> This means that p-chi-squared was less than 0.01 3% of 
the time 
RMSEA (lower)**<=0.05=0-> This means that RMSEA Lower is less than 0.05 0% of 
the time 
RMSEA (lower)**>0.05=0.0325-> This means that RMSEA Lower is greater than 
0.05 3% of the time 
RMSEA (upper)**<=0.1=0-> This means that RMSEA Upper is less than 0.1 0% of 
the time 
RMSEA (upper)**>0.1=0.0325-> This means that RMSEA Upper is greater than 0.1 
3% of the time 
SRMR**<=0.09=0-> This means that SRMR is less than 0.09 0% of the time 
SRMR**>0.09=0.0325-> This means that SRMR is greater than 0.09 3% of the time 
CFI**<0.9=0.0325-> This means that CFI is less than 0.9 3% of the time 
CFI**<0.75=0.0325-> This means that CFI is less than 0.75 3% of the time 
CFI**<0.5=0.0325-> This means that CFI is less than 0.5 3% of the time 
 

*RStudio was not able to calculate the degrees of freedom. 

** Results indicated that RMSEA Lower was less than 0.05 zero percent of the time  
and greater than 0.05 for three percent of the repetitions. These values do not add up 
to 100%. 
 

 
Figure B7. Lavaan Output for Sample Size of 250 and Five Variables, 
Repetitions = 10,000. 
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APPENDIX C 

lavaan (0.5-18) converged normally after   8 iterations 
 
  Number of observations                            50 
  Estimator                                         ML 
  Minimum Function Test Statistic                0.000 
  Degrees of freedom                                 3 
  P-value (Chi-square)                           1.000 
 
  Comparative Fit Index (CFI)                    1.000 
  Tucker-Lewis Index (TLI)                       1.003 
 
  Loglikelihood user model (H0)                617.304 
  Loglikelihood unrestricted model (H1)        617.304 
 
  RMSEA                                          0.000 
  90 Percent Confidence Interval          0.000  0.000 
  P-value RMSEA <= 0.05                          1.000 
 
  SRMR                                           1.877 
 
                   Estimate  Std.err  Z-value  P(>|z|) 
Regressions: 
  z ~ 
    x1               -0.199    0.043   -4.614    0.000 
    x2                0.499    0.006   85.754    0.000 
    x3                0.264    0.016   16.025    0.000 
 
Covariances: 
  x1 ~~ 
    x2                0.000 
    x3                0.000 
  x2 ~~ 
    x3                0.000 
 
Variances: 
    z                 0.073    0.015 
    x1                0.783    0.157 
    x2               42.946    8.589 
    x3                5.368    1.074 
 
Figure C1. Lavaan Output for Sample Size of 50 and Four Variables, Correlation 
= 0.1. 
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lavaan (0.5-18) converged normally after   8 iterations 
 
  Number of observations                           100 
  Estimator                                         ML 
  Minimum Function Test Statistic                0.000 
  Degrees of freedom                                 3 
  P-value (Chi-square)                           1.000 
 
  Comparative Fit Index (CFI)                    1.000 
  Tucker-Lewis Index (TLI)                       1.001 
 
  Loglikelihood user model (H0)               1234.607 
  Loglikelihood unrestricted model (H1)       1234.607 
 
  RMSEA                                          0.000 
  90 Percent Confidence Interval          0.000  0.000 
  P-value RMSEA <= 0.05                          1.000 
 
  SRMR                                           1.877 
 
                   Estimate  Std.err  Z-value  P(>|z|) 
Regressions: 
  z ~ 
    x1               -0.199    0.031   -6.505    0.000 
    x2                0.499    0.004  121.013    0.000 
    x3                0.264    0.012   22.624    0.000 
 
Covariances: 
  x1 ~~ 
    x2                0.000 
    x3                0.000 
  x2 ~~ 
    x3                0.000 
 
Variances: 
    z                 0.074    0.010 
    x1                0.788    0.111 
    x2               43.386    6.136 
    x3                5.423    0.767 
 
Figure C2. Lavaan Output for Sample Size of 100 and Four Variables, 
Correlation = 0.1. 
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lavaan (0.5-18) converged normally after   8 iterations 
 
  Number of observations                           150 
  Estimator                                         ML 
  Minimum Function Test Statistic                0.000 
  Degrees of freedom                                 3 
  P-value (Chi-square)                           1.000 
 
  Comparative Fit Index (CFI)                    1.000 
  Tucker-Lewis Index (TLI)                       1.001 
 
  Loglikelihood user model (H0)               1851.911 
  Loglikelihood unrestricted model (H1)       1851.911 
 
  RMSEA                                          0.000 
  90 Percent Confidence Interval          0.000  0.000 
  P-value RMSEA <= 0.05                          1.000 
 
  SRMR                                           1.877 
 
                   Estimate  Std.err  Z-value  P(>|z|) 
Regressions: 
  z ~ 
    x1               -0.199    0.025   -7.959    0.000 
    x2                0.499    0.003  148.106    0.000 
    x3                0.264    0.010   27.693    0.000 
 
Covariances: 
  x1 ~~ 
    x2                0.000 
    x3                0.000 
  x2 ~~ 
    x3                0.000 
 
Variances: 
    z                 0.074    0.009 
    x1                0.790    0.091 
    x2               43.533    5.027 
    x3                5.442    0.628 
 
Figure C3. Lavaan Output for Sample Size of 150 and Four Variables, 
Correlation = 0.1. 
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lavaan (0.5-18) converged normally after   8 iterations 
 
  Number of observations                           200 
  Estimator                                         ML 
  Minimum Function Test Statistic                0.000 
  Degrees of freedom                                 3 
  P-value (Chi-square)                           1.000 
 
  Comparative Fit Index (CFI)                    1.000 
  Tucker-Lewis Index (TLI)                       1.001 
 
  Loglikelihood user model (H0)               2469.215 
  Loglikelihood unrestricted model (H1)       2469.215 
 
  RMSEA                                          0.000 
  90 Percent Confidence Interval          0.000  0.000 
  P-value RMSEA <= 0.05                          1.000 
 
  SRMR                                           1.877 
 
                   Estimate  Std.err  Z-value  P(>|z|) 
Regressions: 
  z ~ 
    x1               -0.199    0.022   -9.186    0.000 
    x2                0.499    0.003  170.958    0.000 
    x3                0.264    0.008   31.969    0.000 
 
Covariances: 
  x1 ~~ 
    x2                0.000 
    x3                0.000 
  x2 ~~ 
    x3                0.000 
 
Variances: 
    z                 0.074    0.007 
    x1                0.791    0.079 
    x2               43.607    4.361 
    x3                5.451    0.545 
 
Figure C4. Lavaan Output for Sample Size of 200 and Four Variables, 
Correlation = 0.1. 
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lavaan (0.5-18) converged normally after   8 iterations 
 
  Number of observations                           300 
  Estimator                                         ML 
  Minimum Function Test Statistic                0.000 
  Degrees of freedom                                 3 
  P-value (Chi-square)                           1.000 
 
Model test baseline model: 
 
  Comparative Fit Index (CFI)                    1.000 
  Tucker-Lewis Index (TLI)                       1.000 
 
  Loglikelihood user model (H0)               3703.822 
  Loglikelihood unrestricted model (H1)       3703.822 
 
  RMSEA                                          0.000 
  90 Percent Confidence Interval          0.000  0.000 
  P-value RMSEA <= 0.05                          1.000 
 
  SRMR                                           1.877 
 
                   Estimate  Std.err  Z-value  P(>|z|) 
Regressions: 
  z ~ 
    x1               -0.199    0.018  -11.245    0.000 
    x2                0.499    0.002  209.307    0.000 
    x3                0.264    0.007   39.143    0.000 
 
Covariances: 
  x1 ~~ 
    x2                0.000 
    x3                0.000 
  x2 ~~ 
    x3                0.000 
 
Variances: 
    z                 0.075    0.006 
    x1                0.792    0.065 
    x2               43.680    3.566 
    x3                5.460    0.446 
 
Figure C5. Lavaan Output for Sample Size of 300 and Four Variables, 
Correlation = 0.1. 
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lavaan (0.5-18) converged normally after   8 iterations 
 
  Number of observations                           500 
  Estimator                                         ML 
  Minimum Function Test Statistic                0.000 
  Degrees of freedom                                 3 
  P-value (Chi-square)                           1.000 
 
  Comparative Fit Index (CFI)                    1.000 
  Tucker-Lewis Index (TLI)                       1.000 
 
  Loglikelihood user model (H0)               6173.036 
  Loglikelihood unrestricted model (H1)       6173.036 
 
  RMSEA                                          0.000 
  90 Percent Confidence Interval          0.000  0.000 
  P-value RMSEA <= 0.05                          1.000 
 
  SRMR                                           1.877 
 
                   Estimate  Std.err  Z-value  P(>|z|) 
Regressions: 
  z ~ 
    x1               -0.199    0.014  -14.511    0.000 
    x2                0.499    0.002  270.140    0.000 
    x3                0.264    0.005   50.523    0.000 
 
Covariances: 
  x1 ~~ 
    x2                0.000 
    x3                0.000 
  x2 ~~ 
    x3                0.000 
 
Variances: 
    z                 0.075    0.005 
    x1                0.793    0.050 
    x2               43.739    2.766 
    x3                5.467    0.346 
 
Figure C6. Lavaan Output for Sample Size of 500 and Four Variables, 
Correlation = 0.1. 
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The purpose of this study was to evaluate the sensitivity of selected fit index 

statistics in determining model fit when the distribution varied from normality, as is 

typically true of data research for the physical sciences. SEM is a popular statistical 

method and is used in many physical and social behavioral science research 

projects; however, the sensitivity of the model fit indices when normality is violated 

had never been estimated. 

The original intent for performing the research was to analyze the legitimacy of 

the model fit indices’ results against three different types of distributions. One data 

distribution contained five variables (Torque at Transmission, Engine Speed, Vehicle 

Speed, Accelerator Pedal Position, and Fuel Used). The variables were assessed 

using an SEM, and a Monte Carlo simulation of 10,000 iterations for varying sample 

sizes of n = 10, 20, 30, 50, 100, and 250. It was determined that an indication of poor 

model fit occurred with greater consistency as the sample size of the data set 

increased. It was also determined that the magnitude of the correlation decreased as 
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sample size decreased, and as the correlation approached zero the model fit resulted 

in illogical results. 

Additional Monte Carlo simulations were therefore conducted, with 1,000 

repetitions, and varying magnitudes of correlation matrix values randomly selected 

from a range of a base value plus or minus 0.015. Twenty four Monte Carlo 

simulations were performed, with the base value increasing from 0.04 to 0.27. As the 

correlation matrix values were increased in magnitude, the results of the model fit 

indices became first illogical and then finally logical, with an increasing indication of a 

poor model fit. At a certain specified magnitude, the results of the model fit indices 

were an indication of a poor model fit for the model fit index studied for all Monte 

Carlo repetitions.  

These results were forwarded to a subject matter expert. This expert, in citing 

Kline (2011), opined the most likely explanation for the study results was the default 

method of Maximum Likelihood that assumes variables are unstandardized. When 

variables are standardized, the results could be incorrect. The subject matter expert 

concluded that no systematic Monte Carlo study could be conducted by inputting an 

incrementally increasing correlation matrix, such as was attempted in this study. 
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